摘要
This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.
This paper models a low-power high-frequency digitally controlled synchronous rectifier (SR) OUCK converter. The converter is a hybrid system with three operation modes. Digital PID controler is used. Key problems such as quantization resolution of digital pulse-width modulation (DPWM) and steady-state limit cycles of digital control switching model power supply (SMPS) are discussed, with corresponding solutions presented. Simulation of a digital control synchronous buck is performed with a fixed-point algorithm. The results show that the described approach enables high-speed dynamic performance.
基金
the Power Electronics Science Education Development Program of Delta Environmental & EducationFoundation (Grant No.DERO2007014)
the Scientific Service of the Embassy of France in China (Grant No.K06D20)