期刊文献+

滚动轴承故障信号的数学形态学提取方法 被引量:41

Mathematical Morphology Extracting Method on Roller Bearing Fault Signals
在线阅读 下载PDF
导出
摘要 基于非线性数学形态变换的概念设计了形态非抽样小波变换算法,通过构造信号分解算子和结构元素,经过多尺度形态小波分解既能够平滑噪声又提取了信号中的故障特征成分。分别对模拟信号和实验数据进行分析处理,结果均表明该方法对信号冲击特征的提取是有效的。最后通过与包络解调分析方法的对比,说明了形态非抽样小波变换对滚动轴承故障特征的提取效果更明显。由于形态非抽样小波变换算法只涉及加减和取极大、极小运算,运算简单,执行高效,非常适于滚动轴承故障的在线监测和诊断。 Based on mathematical morphology theory, the morphological undecimated wavelet transform (MUWT) algorithm was presented according to the shape feature of the signals. The multi-scale MUWT operation can not only smooth the background noises but also extract the characteristic components by constructing the signal decomposition operators and the structuring elements. This method was used to analyze the simulated data and measured signals from the bearing test rig. The results reveal that it is effective to the impulse characteristics extraction. Comparied with the normal enveloping demodulation method, the MUWT operation is more simple and effective for defect diagnosis in the roller bearing. The MUWT algorithm includes addition, subtraction, maximum and minimum operations, and does not involve multiplication and division, the signal information is not lost in the decomposition procedure. It is suitable for the on-line faults monitoring and diagnosis of roller bearing.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第26期65-70,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(10732060 10702031) 国家86高技术基金项目(2006AA04Z438) 河北省自然科学基金项目(E2007000649)~~
关键词 滚动轴承 形态非抽样小波变换 故障诊断 包络解调 roller beating morphological undecimated wavelet transform faults diagnosis enveloping demodulation
  • 相关文献

参考文献20

  • 1钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 2李力,屈梁生.循环统计量方法在滚动轴承故障诊断中的应用[J].振动.测试与诊断,2003,23(2):116-119. 被引量:21
  • 3Wang Changting, Robert X Gao. Wavelet transform with spectral post-processing for enhanced feature extraction[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(4): 1296-1301.
  • 4梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1996..
  • 5Peng Z K, Tsea P W, Chu F L. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing, 2005(19): 974-988.
  • 6Abdullah M, Al-Ghamd, David Mba. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size[J]. Mechanical Systems and Signal Processing, 2006(20): 1537-1571.
  • 7罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 8李辉,郑海起,唐力伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报,2006,26(15):124-128. 被引量:26
  • 9Goutsias J, Heijmans H J A M. Nonlinear multiresolution signal decomposition schemes-Part h morphological pyramids[J]. IEEE Transactions on Image Processing, 2000, 9(11): 1862-1876.
  • 10Heijmans H J A M, Goutsias J. Nonlinear multiresolution signal decomposition schemes-Part Ⅱ: morphological wavelets[J]. IEEE Transactions on Image Processing, 2000, 9(11): 1897-1913.

二级参考文献84

共引文献335

同被引文献359

引证文献41

二级引证文献431

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部