期刊文献+

基于BP神经网络的X光图像畸变校正技术的研究 被引量:3

Research of correcting distorted X-ray image based on BP neural network
在线阅读 下载PDF
导出
摘要 为解决基于图像导航的机器人辅助外科手术过程中X光图像的畸变特性问题,提出了一种新型的基于BP神经网络的X光畸变图像校正方法。该方法首先从一个标准模板的X光畸变图像中提取标定样本位置信息作为神经网络输入,以模板的标定样本真实位置信息为神经网络输出,构建BP神经网络。该BP神经网络能够实现畸变图像与真实模板之间的映射关系,从而达到图像畸变校正的目的。最后通过机器人辅助髓内钉锁孔实验对该方法进行了实验验证,证明了该方法的有效性。 To solve the distortion problem of the X-ray image in the process of robot-assisted surgery, this paper proposed a new method of X-ray image distortion correction based on BP neural network. In this method, the BP neural network was built through using the position information of the calibration samples extracted from the distorted X-ray image in a standard template as the neural network input, and using the real position information of the calibration samples in the standard template as the neural network output. The mapping between the distorted X-ray image and the standard template could be achieved using this BP neural network, the distortion problem could be solved. The method was tested by the experiment of locking the distal screw of the medullary nail with the help of the robot-assisted surgery system, and it was proved to be effective.
出处 《计算机应用研究》 CSCD 北大核心 2008年第10期3050-3052,共3页 Application Research of Computers
基金 长江学者创新团队计划资助项目(IRT0423) 国家自然科学基金资助项目(60505016 60675037)
关键词 反馈神经网络 X光图像 畸变校正 BP neural network X-ray image distortion correction
  • 相关文献

参考文献12

  • 1JOSKOWICZ L,MILGROM C,SIMKIN A, et al. FRACAS: a system for computer-aided image-guided long bone fracture surgery [ J ]. Computer Aided Surgery, 1998,3 ( 6 ) :271-288.
  • 2MYER K. Standard handbook of biomedical engineering and design [M]. [S. l. ]: McGraw-Hill Professional, 2002.
  • 3FENNER E, FRANZ F, GUDDEN F, et al. X-ray image intensitiers : image quality and possibilities for enhancement [ J ]. Advances in Electron and Electronic Physics, 1972, 33(B) : 1049-1059.
  • 4RUDIN S, BEDNAREK D R, WONG R. Accurate characterization of image-intensifier distortion [J ]. Medical Physics, 1991,18 ( 6 ) : 1145-1151.
  • 5FORLANI C, FERRIGNO G. Automatic real-time XRII local distortion correction method for digital linear tomography[ C ]//Proc of Association for Computing Machinery. London : Springer-Verlag,2001 : 23 -26.
  • 6李杰,韩正之.神经网络的学习误差函数及泛化能力[J].控制与决策,2000,15(1):95-97. 被引量:29
  • 7IOANNOU D, HUDA W, LAINE A F. Circle recognition through a 2D Hough transform and radius histogramming[J]. Image and Vision Gomputing, 1999, 17( 1 ) : 15-26
  • 8林金龙,石青云.用点Hough变换实现圆检测的方法[J].计算机工程,2003,29(11):17-18. 被引量:94
  • 9沈清,胡德文,时春.神经网络应用技术[M].长沙:国防科技大学出版社,1993.
  • 10楼顺天,施阳.基于MATLAB Ⅲ的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,1999.

二级参考文献15

  • 1Daugman J G. High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Tran. Pattern Machine Intell,1993,15(11):1148-1161.
  • 2Davies E R. A Modified Hough Scheme for General Circle Location, Pattern Recognition Letters, 1987,7:37-43.
  • 3Davies E R. The Effect of Noise on Edge Orientation Computation,Pattern Recognition Letters, 1987,6:315-322.
  • 4Ioannou D, Huda W, Laine A F. Circle Recognition Through a 2D Hough Transform and Radius Histogramming. Image and Vision Computing, 1999,17:15-26.
  • 5Atherton T J, Kerbyson D J. Size Invariant Circle Detection. Image and Vision Computing, 1999,17:795-803.
  • 6荣 L,系统辨识.使用者的理论,1990年
  • 7陈开明,概率论与数理统计,1989年
  • 8GUEZIEC A,WU K.Providing visual information to validate 2-D to 3-D registration[J].Medical Image Analysis,2000,4(5):357-374.
  • 9KWOH Y S,HOU J,JONCKHEERE E A.A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery[J].IEEE Transactions on Biomedical Engineering,1988,35(2):153-160.
  • 10MELZER A,SCHMIDT A,KIPFMULLER K,et al.Technology and principles of tomographic image-guided interventions and surgery[J].Surgical Endoscopy,1997,11(9):946-956.

共引文献151

同被引文献25

  • 1朱铮涛,黎绍发,陈华平.基于平面网格模型的摄像机镜头畸变校正技术[J].计算机工程与应用,2004,40(23):32-35. 被引量:15
  • 2王珂娜,邹北骥,黄文梅.一种基于神经网络的畸变图像校正方法[J].中国图象图形学报(A辑),2005,10(5):603-607. 被引量:25
  • 3马广彬,章文毅,陈甫.图像几何畸变精校正研究[J].计算机工程与应用,2007,43(9):45-48. 被引量:23
  • 4王雪青,喻刚,孟海涛.基于GA改进BP神经网络的建设工程投标报价研究[J].土木工程学报,2007,40(7):93-98. 被引量:36
  • 5LEGGETT K. Endoscopy: many plusses and still a few minuses[J]. Biophoton. Int., 1999, 6(2): 50-53.
  • 6KONEN W, TOMBROCK S, SCHOLZ M. Robust registration procedures for endoscopic imaging[J]. Medical Image Analysis, 2007, 11(6): 526-539.
  • 7WANG X, KLETTE R, ROSENHAHN B. Geometric and photometric correction of projected rectangular pictures [C]//Proceedings of International Conference on Image and Vision Computing, 2005: 223-228.
  • 8HELFERTY J P, ZHANG C, MCLENNAN G, HIGGINS W E. Video endoscopic distortion correction and its application to virtual guidance of endoscopy[J]. IEEE Transactions on Medical Imaging, 2001, 20(7): 605-617.
  • 9简大渊.内视镜影像序列之自动校正、重构与病灶量测[D].台南:国立成功大学,2002.
  • 10冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2008.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部