期刊文献+

扁球薄壳在大挠度下的非线性动力稳定性 被引量:3

NONLINEAR DYNAMIC STABILITY OF THE SHALLOW THIN SPHERICAL SHELLS UNDER LARGE DEFLECTION
在线阅读 下载PDF
导出
摘要 根据薄壳非线性动力学理论,由扁球薄壳大挠度基本方程,在周边固定夹紧的条件下,用修正迭代法求出二次近似解析解,把大挠度解作为扁球薄壳的初挠度处理,推导出扁球薄壳在大挠度下的非线性动力学基本方程。然后给出满足夹紧固定边界条件下的位移模式,求出张力。由动力学势的一阶变分为零得到平衡曲面方程。继之用突变理论给出相应的分岔点集的方程组,同时讨论了扁球薄壳整体的稳定性问题。该文也给出了相应平衡曲面的分岔点集的示意图。 Based on nonlinear dynamic theory of thin shells and the basic large deflection equations of the shallow reticulated spherical thin shells, regarding large deflection as the initial deflection, the basic nonlinear dynamic equations are established by using the modified iteration method to obtain the analytical solution of quadratic approximation under the boundary conditions of clamped edges. The tension is obtained according to the displacement model that satisfies the same boundary conditions. The equation of the balanced surface is obtained by set the first variation of the dynamic potential to be zero. Then, the systems of equations of the corresponding bifurcation point set are given in terms of catastrophic theory and the whole stability of the shallow thin spherical shells is discussed. In addition, the sketch map of the corresponding bifurcation point set of the balanced surface is also given in this paper.
出处 《工程力学》 EI CSCD 北大核心 2008年第10期76-79,85,共5页 Engineering Mechanics
基金 甘肃省自然科学基金项目(3ZS042-B25-006)
关键词 大挠度 非线性 稳定性 修正迭代法 动力学势 large deflection nonlinearity stability modified iteration method dynamic potential
  • 相关文献

参考文献11

  • 1王新志.圆底扁薄锥壳在均匀载荷作用下非线性稳定问题.甘肃工业大学学报,1980,6(1):29-65.
  • 2刘人怀.在内边缘均布力矩作用下中心开孔圆底扁球壳的非线性稳定问题.科学通报,1965,10(3):253-255.
  • 3刘人怀.在边缘载荷作用下中心开孔圆底扁薄球壳的轴对称稳定性.力学,1977,(3):206-212.
  • 4罗祖道 聂德耀 刘汉东.双层金属球面扁壳的热稳定问题.力学学报,1966,9(1):1-13.
  • 5Singh P N, Sundararajan V, Das Y C. Large amplitude axisyrnmetric vibrations of moderately thick spherical caps [J]. Journal of Sound and Vibration, 1972, 20(3): 269-276.
  • 6Ramachandran J. Vibration of shallow spherical shells at large amplitudes [J]. Journal of Applied Mechanics, 1974, 41(6): 811-812.
  • 7Ramachandran J. Large amplitude vibration of shallow spherical shell with concentrated mass [J]. Journal of Applied Mechanics, 1976, 43(3): 363-365.
  • 8Yasuda K, Kushida G. Nonlinear forced oscillations of a shallow spherical shell [J]. Bulletin Japanese Sociexy of Mechanical Engineers, 1984, 27(23): 2233-2240.
  • 9Dumir P C. Nonlinear axisymmetric response of orthotropic thin truncated conical and spherical caps [J]. Acta Mechanica Sinica, 1986, 60(1): 121 - 132.
  • 10王新志,韩明君,高武杰,栗蕾.扁球壳和扁锥壳静动态非线性基本方程[C]//焦善庆.数学·力学·物理·高新技术进展.成都:西南交通大学出版社,2006(11):147-150.

共引文献5

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部