期刊文献+

基于Bayes多传感器数据融合的电路故障诊断 被引量:2

Circuit fault diagnosis based on Bayes multi-sensor data fusion
在线阅读 下载PDF
导出
摘要 针对电子电路的故障诊断问题,提出一种基于Bayes决策理论的多传感器数据融合解决方法。通过测试电路中被诊断元件温度和节点电压2个物理量,得出Bayes理论中不同传感器对各待诊元件的先验概率,在此基础上,利用Bayes条件概率公式进行两级数据融合,得到各元件关于故障类型的目标概率值,进而根据最大概率值确定故障元件。Bayes多传感器数据融合诊断与单传感器诊断方式相比,大大提高了故障识别准确率,并降低了故障元件不确定的概率。实验结果证明:该方案是一种有效的电路故障诊断方法。 A data fusion method for circuit fault diagnosis is presented based on Bayes decision theory. By measuring the temperature and voltage of circuit components, the prior probabilities and conditional probabilities of different sensors to every circuit component are obtained. The target probability values of fault types and attributes for the components are calculated via two-level data fusion with Bayes conditioned probability formula, thus the fault component is found according to maximum probability value. Comparing the diagnosis results based on separate sensor to multi-sensor, it is shown that the later not only improves the accurate rate of fault recognition but reduces the probability of uncertainty. Tests indicate that this method is effective for circuit fault diagnosis.
出处 《传感器与微系统》 CSCD 北大核心 2008年第10期33-35,38,共4页 Transducer and Microsystem Technologies
基金 国家"863"计划资助项目(2006AA10A301 2006AA10Z335)
关键词 电路故障诊断 多传感器 数据融合 circuit fault diagnosis multi-sensor data fusion
  • 相关文献

参考文献10

二级参考文献48

共引文献236

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部