期刊文献+

混沌时间序列的混合遗传神经网络预测方法 被引量:8

Hybrid Genetic Neural Network Method for Predicting Chaotic Time Series
在线阅读 下载PDF
导出
摘要 在相空间重构理论的基础上,将改进的遗传算法和神经网络结合起来,提出了一种混合遗传神经网络预测混沌时间序列的方法。通过复相关法和Cao方法重构混沌时间序列,利用改进的遗传算法优化神经网络的结构、初始权值和阈值,然后训练神经网络求得最优解。该算法应用到混沌时间序列的预测中,验证了该算法的有效性,并与BP和RBF算法的预测精度进行了比较,仿真结果表明该算法对混沌时间序列具有更好的非线性拟合能力和更高的预测精度。 By incorporating modified genetic algorithm with the neural network, a novel hybrid genetic neural network method for predicting chaotic time series based on the theory of phase-space reconstruction was presented. The chaotic time series was reconstructed by using multiple correlation and Cao's methods, and the modified genetic algorithm was used to optimize the structure, the initial weights and thresholds of neural network, then neural network was trained to search for the optimal solution. The availability of this algorithm was proved by predicting chaotic time series, and the precision of this algorithm compared with those of BP and RBF algorithms. The computer simulations have shown that the nonlinear fitting and precision of this algorithm are better than those of BP and RBF algorithms.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5825-5828,共4页 Journal of System Simulation
基金 国家自然科学基金项目(50677014) 高校博士点基金项目(20060532016) 教育部新世纪优秀人才支持计划(NCET-04-0767) 湖南省自然科学基金项目(06JJ2024)
关键词 混沌时间序列 相空间重构 遗传算法 神经网络 非线性预测 chaotic time series phase-space reconstruction genetic algorithm neural network nonlinear prediction
  • 相关文献

参考文献10

二级参考文献105

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2赵鸿,柴路,王浩,刘书声.互信息在时间序列分析中的应用[J].应用科学学报,1996,14(1):48-52. 被引量:11
  • 3Aziz-Alaoui M A,Robert C,Grebogi C.Dynamics of a Henon-Lozi-type map[J].Chaos,Solitons & Fractals,2001,12(12):2323-2341.
  • 4Shin C K,Yun U T,Kim H K.et al.A hybrid approach of neural network and memory-based learning to data mining[J].Neural Networks,IEEE Transactions on,2000,11(3):637-646.
  • 5de Oliveira K A,Vannucci A,da Silva E C.Using artificial neural networks to forecast chaotic time series[J].Physica A:Statistical Mechanics and its Applications,2000,284(1-4):393-404.
  • 6Navone H D,Ceccatto H A.Learning chaotic dynaqmics by neural networks[J].Chaos,Solitons & Fractals,1995,6 (Supplement 1):383-387.
  • 7Aussem A.Dynamical recurrent neural networks towards prediction and modeling of dynamical systems[J].Neurocomputing,1999,28(1-3):207-232.
  • 8Xu M,Ch Guanrong,Tian Y T.Identifying chaotic systems using Wiener and Hammerstein cascade models[J].Mathematical and Computer Modelling,2001,33,(4-5):483-493.
  • 9Medeiros M C,Veiga A.A hybrid linear-neural model for time series forecasting[J].Neural Networks,IEEE Transactions on,2000,11(6):1402-1412.
  • 10Hotnik K, Stinchcombe M, White H. Multilayer feed-for-ward networks are universal approximators[J].Neural Networks,1989,2(5):359-366.

共引文献167

同被引文献104

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部