摘要
Furuta showed that if A≥B≥0,then for each r≥0,f(p)=(A^r/2 B^p A^r/2)^t+r/p+r is decreasing for p≥t≥0.Using this result,the following inequality(C^r/2(AB^2A)^δC^ r/2)^ p-1+r/4δ+r ≤C^p-1+r is obtained for 0〈p ≤1,r≥1,1/4≤δ≤1 and three positive operators A, B, C satisfy(A^1/2BA^1/2)^p/2≤A^p,(B^1/2AB^1/2)^p/2≥B^p,(C^1/2AC^1/2)^p/2≤C^p,(A^1/2CA^1/2)^p/2≥A^p.
Furuta showed that if A≥B≥0,then for each r≥0,f(p)=(A^r/2 B^p A^r/2)^t+r/p+r is decreasing for p≥t≥0.Using this result,the following inequality(C^r/2(AB^2A)^δC^ r/2)^ p-1+r/4δ+r ≤C^p-1+r is obtained for 0〈p ≤1,r≥1,1/4≤δ≤1 and three positive operators A, B, C satisfy(A^1/2BA^1/2)^p/2≤A^p,(B^1/2AB^1/2)^p/2≥B^p,(C^1/2AC^1/2)^p/2≤C^p,(A^1/2CA^1/2)^p/2≥A^p.
基金
Science Foundation of Ministry of Education of China(208081)