期刊文献+

AN ORDER PRESERVING INEQUALITY FOR THREE OPERATORS VIA FURUTA INEQUALITY

AN ORDER PRESERVING INEQUALITY FOR THREE OPERATORS VIA FURUTA INEQUALITY
在线阅读 下载PDF
导出
摘要 Furuta showed that if A≥B≥0,then for each r≥0,f(p)=(A^r/2 B^p A^r/2)^t+r/p+r is decreasing for p≥t≥0.Using this result,the following inequality(C^r/2(AB^2A)^δC^ r/2)^ p-1+r/4δ+r ≤C^p-1+r is obtained for 0〈p ≤1,r≥1,1/4≤δ≤1 and three positive operators A, B, C satisfy(A^1/2BA^1/2)^p/2≤A^p,(B^1/2AB^1/2)^p/2≥B^p,(C^1/2AC^1/2)^p/2≤C^p,(A^1/2CA^1/2)^p/2≥A^p. Furuta showed that if A≥B≥0,then for each r≥0,f(p)=(A^r/2 B^p A^r/2)^t+r/p+r is decreasing for p≥t≥0.Using this result,the following inequality(C^r/2(AB^2A)^δC^ r/2)^ p-1+r/4δ+r ≤C^p-1+r is obtained for 0〈p ≤1,r≥1,1/4≤δ≤1 and three positive operators A, B, C satisfy(A^1/2BA^1/2)^p/2≤A^p,(B^1/2AB^1/2)^p/2≥B^p,(C^1/2AC^1/2)^p/2≤C^p,(A^1/2CA^1/2)^p/2≥A^p.
作者 杨长森
出处 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期998-1002,共5页 数学物理学报(B辑英文版)
基金 Science Foundation of Ministry of Education of China(208081)
关键词 Positive operator Furuta inequality operator inequality Positive operator, Furuta inequality, operator inequality
  • 相关文献

参考文献8

  • 1Furuta T. A ≥ B ≥ 0 assures (B^rA^PB^r)^1/q ≥ Bq/p+2r for r ≥ 0,p ≥ 0,q ≥ 1 with (1 +2r)q ≥p+2r. ProcAmer Math Soc, 1987, 101(1): 85-87.
  • 2Furuta T. An elementary proof of an order preserving inequality. Proc Japan Acad Ser A, 1989, 65:126.
  • 3Fujii M. Furuta's inequality and its mean theoretic approch. J Operator Theory, 1990, 23:67-72.
  • 4Kamei E. A satellite to Furuta's inequality. Math Japon, 1988, 33(2): 883-886.
  • 5Tanahashi K. Best possibility of the Furuta inequality. Proc Amer Math Soc, 1996, 124:141-146.
  • 6Furuta T. Two operator functions with monotone property. Proc Amer Math Soc, 1991, 111:511-516.
  • 7Furuta T. Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra and Its Applications, 1995, 219:139-155.
  • 8Yanagida M. Powers of class wA(s, t) operators associated with generalized Aluthge transformation, Journal of Inequalities and Applications, 2002, 7:143-168.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部