期刊文献+

改进的遗传算法在催化裂解集总动力学参数估值中的应用 被引量:3

Application of an improved genetic algorithm in estimating lumped kinetic parameters for catalytic cracking reaction
原文传递
导出
摘要 以基本遗传算法为基础,引入多重退火交叉,并以多种变异模式竞争取代单一的变异策略,以随着遗传代数和个体适应度动态调节的交叉和变异概率代替固定不变的交叉和变异概率,提出了一种改进的遗传算法;用于研究包含复杂组分、同时进行多种反应的催化裂解反应集总动力学,并与传统的算法比较,证明改进的遗传算法可迅速、准确获得有物理意义的动力学参数优化值,是研究复杂反应动力学的有效数值工具。 An improved genetic algorithm (GA) was applied to the estimation of 5 lumped model parameters appearing in the rate equations of catalytic cracking reaction. The GA was developed by a hybrid use of such strategies as multi-annealing crossover, competitive mutation, and crossover probability and mutation probabilities varying with generations and fitness. It is demonstrated that the GA algorithm yields, with a higher estimating precision and better convergence than the conventional GA algorithms, the optimal values of the rate parameters for the complex reaction system, thereby constituting a useful numerical tool for studying complex reaction kinetics.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第10期1225-1228,共4页 Computers and Applied Chemistry
基金 国家重点基础研究发展规划项目(2004CB719505)
关键词 遗传算法 催化裂解 集总动力学 genetic algorithm, catalytic cracking, lumped kinetic model
  • 相关文献

参考文献6

二级参考文献24

共引文献100

同被引文献50

  • 1韩晓霞,谢克明.遗传算法在催化材料组合选择和优化中的应用[J].工业催化,2004,12(8):1-5. 被引量:2
  • 2Ph.D.Candidate:Sun JianXi’an University of Technolgy, Xi’an 710048, ChinaSupervisor:Yu Changzhao (Tsinghua University, Beijing 100084, China)Li Yuzhu (Tsinghua University, Beijing 100084, China)Chen Changzhi (Tsinghua University, Beijing 100084, China)Members of Dissertation Defense Committee:Gao Jizhang (China Institute of Water Resources and Hydropower Research), ChairmanLi Guifen (China Institute of Water Resources and Hydropower Research)Cui Guangtao (Tianjing University)Wang Xingkui (Tsinghua University)Yu Changzhao (Tsinghua University)Li Yuzhu (Tsinghua University)Chen Changzhi (Tsinghua University).FLOOD DISCHARGE AND ENERGY DISSIPATION BY JETS FROM OUTLETS IN HIGH ARCH DAM[J].Journal of Hydrodynamics,2003,15(1):122-122. 被引量:39
  • 3ZupanJ GasteigerJ 潘忠孝 陈玲然译.神经网络及其在化学中的应用[M].合肥:中国科技大学出版社,2000..
  • 4李玉敏.工业催化原理[M].天津:天津大学出版社,1996.175.
  • 5吴飞跃,翁惠新,罗世贤.FDFCC工艺中汽油提升管催化裂化反应动力学模型研究[J].石油炼制与化工,2007,38(10):59-63. 被引量:13
  • 6张结喜,齐艳华,邱建章.催化裂化关联模型的研究[J].计算机与应用化学,2007,24(11):1519-1522. 被引量:12
  • 7Robert Becker E. Computer aided design of catalysts[M]. New York: Marcel Dekker Inc, 1993.
  • 8Banares-hlcantara R. Design expert for catalysts development[J]. Comput Chem Eng, 1988(12): 923-935.
  • 9Speck H, Hoelderich W. Application of relational database systems in the design and development of industrial heterogeneous catalysts[J]. Decheme-Monogr, 1989(116): 43-67.
  • 10Koertintg E, Baerns M. Comput Aided Innovation New Mater 2[M]. Netherland: Amsterdam, 1992.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部