期刊文献+

基于分形维数的SAR图像变化检测 被引量:7

SAR Image Change Detection Based on Fractal Dimension
在线阅读 下载PDF
导出
摘要 斑点噪声是合成孔径雷达(synthetic aperture radar,SAR)相干成像所固有的,且不可避免的.为了尽可能地抑制斑点噪声对SAR图像变化检测的影响,利用分形维数方法对SAR图像的变化检测进行了研究,并提出了一种基于SAR图像分形维数的变化检测算法,该算法对SAR图像斑点噪声不敏感.并对计算分形维的滑动窗大小的选择进行了研究.用实测SAR图像进行了验证实验,结果表明分形维数可以用于SAR图像变化检测,它是一种新的SAR图像变化检测的方法与途径;同时,滑动窗大小的选择对SAR图像检测结果有影响. Speckle noise is inherent and unavoidable for synthetic aperture radar (SAR) images, because its principle is coherent imaging. In order to reduce affection of speckle noise to SAR image change detection as much as possible, fractal dimension method is used to study SAR image change detection. A new change detection algorithm based on SAR image fractal dimension, which is insensitive to speckle noise is proposed. The choice of sliding window size for counting fractal dimension is also studed. Some real SAR images are implemented to verify the method. Experimental results indicate that fractal dimension can be used to perform SAR image change detection and that the new SAR image change detection method--fractal dimension is ideal. At the same time, the choice of sliding window size brings some affection for SAR image change detection.
出处 《西安工业大学学报》 CAS 2008年第5期466-470,共5页 Journal of Xi’an Technological University
关键词 SAR图像 分形维数 变化检测 盒维数 SAR image fractal dimension change detection box dimension
  • 相关文献

参考文献11

  • 1[1]Quegan S,Le T Toan,Yu J J,et al.Floury,Multitemporal ERS SAR Analysis Applied to Forest Mapping[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):741.
  • 2[2]Lee T Thuy.Florrence R Rice Crop and Monitoring Using ERS-1 Data Based on Experiment and Modeling Results[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):41.
  • 3[4]Mansouri B.Remote sensing:Feasibility of Change/Damage Detection in Urban Areas and Structures by Synthetic Aperture Radar(SAR)Imagery[D].Graduate School,University of Southern California,Los Angeles,California,2002.
  • 4[5]Gamba P,Acqua F D,Trianni G.Rapid Damage Detection in the Bam Area Using Multitemporal SAR and Exploiting Ancillary Data[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(6):1582.
  • 5[7]Bazi Y,Bruzzone L,Melgani F.An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):874.
  • 6[13]Chaudhuri B B,Sarkar N.Texture Segmentation Using Fractal Dimension[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(1):72.
  • 7[14]Keller J,Chen S,Crownover R On the Calculation of Fractal Features from Images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1087.
  • 8[15]Liebovitch S,Toth T.A Fast Algorithm of Determining Fractal Dimensions by Box Counting[J].Physics Letters,1989,(8/9):386.
  • 9[16]Nirupam Sarkar,Chaudhuri B B.An Efficient Differential Box-counting Approach to Compute Fractal Dimension of Image[J].IEEE Trans.SMC,1994,24(1):115.
  • 10[17]Pentlend P.Fractal-based Description of Natural Scenes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661.

同被引文献92

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部