Fan-Browder Type Fixed Point Theorems and Its Applications on Generalized Convex Product Spaces
被引量:2
Fan-Browder Type Fixed Point Theorems and Its Applications on Generalized Convex Product Spaces
摘要
Fan-Browder type fixed point theorems are obtained for non-selfmaps on non-compact generalized convex product spaces and new existence problems of(partially) maximai element and equilibrium point are discussed as applications of above results.
基金
Supported by the National Natural Science Foundation of China(10361005)
参考文献9
-
1ARROW K J, DEBREU G. Existence of an equilibrium for a competitive economy[J]. Econometrica, 1954, 22: 265-290.
-
2GALE D, MAS-Colell A. Equilibrium and Disequilibrium in Economic Theory(G Schwdianer, ed)[M]. Reidel: Dordrecht, 1978, 7-14.
-
3METHA G, TAN K K, YUAN X Z. Fixed points, maximal elements and equilibria of generalized games[J]. Nonlinear Anal, 1997, 28: 689-699.
-
4PARK S H. New Susclasses of Generalized Concex Spaces[M]. Huntington: Nova Sci Publ, NY, 2002.
-
5LASSONDE M. On the use of KKM multimaps in fixed point theory and related topics[J]. J Math Anal Appl, 1983, 97: 151-201.
-
6HORVATH C D. Contractibility and generalized convexity[J]. J Math Anal Appl, 1991, 156: 341-357.
-
7PIAO Yong-jie. Some basic properties on generalized convex spaces[J]. Yanbian Univ(Natural Sci), 2002, 28(3): 157-159.
-
8PARK S H. Five episodes related to generalized convex spaces[J]. Nonlinear Funct Anal and Appl, 1997, 2: 49-61.
-
9TARAFDAR E. Fixed point theorems in H-spaces and equilibium points of abstract economies[J]. J Austral Math Soc, 1992, 53: 252-260.
同被引文献13
-
1朴勇杰.一般化凸乘积空间上Fan-Browder型不动点定理和平衡点定理(英文)[J].纯粹数学与应用数学,2004,20(3):197-203. 被引量:4
-
2杨明歌,邓磊.拓扑空间中Fan-Browder映射的连续选择定理及其应用[J].应用数学和力学,2006,27(4):439-446. 被引量:3
-
3Park S. On Generalization of the KKM Principle on Abstract Convex Space [J]. Nonlinear Anal Forum, 2006, 11 (1) : 67 -77.
-
4TIAN Guo-qiang. Generalization of FKKM Theorem and the Ky Fan Minimax Inequality with Applications to Maximal Elements, Price Equilibrim, and Complementarity [J]. J Math Anal Appl, 1992, 170(2) : 457-471.
-
5Lassonde M. On the Use of KKM Multifunctions in Fixed Point Theory and Related Topics [ J ]. J Math Anal Appl, 1983, 97(1) : 151-201.
-
6Hovarth C. Contractibility and Generalized Convexity [J]. J Math Anal Appl, 1991, 156(2) : 341-357.
-
7Park S, Kim H. Coincidence Theorems for Admissible Multifunctions on Generalized Convex Spaces [ J ]. J Math Anal Appl, 1996, 197(1): 173-187.
-
8Kim H, Park S. Remarks on the KKM Property for Open Valued Muhimaps on Generalized Convex Spaces [ J ]. J Korean Math Soc, 2005, 42(1) : 101-110.
-
9/ DING Xie-ping. Generalized KKM Type Theorems in FC-Spaces with Applications ( I ) [ J ]. J Glob Optim, 2006- / 36(4) : 581-596.
-
10Park S. Fixed Point Theorems on -Maps in Abstract Convex Space [ J ]. Nonlinear Anal Forum, 2006, 11 (2) 117-127.
-
1WANG ShiMo,LU ShanZhen,YAN DunYan.Explicit constants for Hardy’s inequality with power weight on n-dimensional product spaces[J].Science China Mathematics,2012,55(12):2469-2480. 被引量:14
-
2WANG Hui1 & CHEN JieCheng2,3, 1Department of Mathematics, Xidian University, Xi’an 710071, China,2Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China,3Department of Mathematics, Zhejiang University, Hangzhou 310027, China.The maximal super-singular integral operators on product spaces[J].Science China Mathematics,2011,54(12):2615-2626. 被引量:1
-
3胡国恩,陆善镇,燕敦验.L^p(R^m× R^n) boundedness for the Marcinkiewicz integral on product spaces[J].Science China Mathematics,2003,46(1):75-82. 被引量:7
-
4Chen Jiecheng and Wang Silei (Zhejiang University, China).SOME ROUGH OPERATORS ON PRODUCT SPACES[J].Analysis in Theory and Applications,2001,17(1):48-69. 被引量:2
-
5Yan ZHAO,Ximin LIU.A Class of Complete Hypersurfaces Immersed in Semi-Riemannian Warped Product Spaces[J].Journal of Mathematical Research with Applications,2016,36(6):723-731.
-
6李春,林鹏,彭立中.PARACOMMUTATORS ON PRODUCT SPACES[J].Acta Mathematica Scientia,1993,13(1):39-55.
-
7范进军.EXISTENCE OF GENERALIZED WEAKLY SOLUTIONS OF DIFFERENTIAL EQUATIONS IN PRODUCT SPACES[J].Annals of Differential Equations,2004,20(1):21-29.
-
8Jiang Qingtang Peking University. P. R. China.TOEPLITZ-HANKEL TYPE OPERATORS ON PRODUCT SPACES[J].Analysis in Theory and Applications,1993,9(2):9-23.
-
9SU ZHONGGEN.ON THE CENTRAL LIMIT THEOREM IN PRODUCT SPACES[J].Applied Mathematics(A Journal of Chinese Universities),1995,10(4):367-378.
-
10Liu Chuan,Lin Shou Department of Mathematics, Guangxi University, Nanning 530004, China Department of Mathematics, Ningde Teachers College, Fujian 352100, China.K-Spaces Property of Product Spaces[J].Acta Mathematica Sinica,English Series,1997,13(4):537-544. 被引量:1