期刊文献+

基于半监督学习的核信任力传播聚类算法

Semi-Supervised Learning Based Kernel Affinity Propagation Clustering Method
在线阅读 下载PDF
导出
摘要 文中提出一种半监督核信任力传播聚类算法(SSKAPC).SSKAPC在对样本聚类的过程中,引入先验知识提高聚类性能;同时该算法将样本映射到高维空间进行聚类.人工数据和真实世界数据的实验表明,SSKAPC算法能大幅度提高聚类的准确性. In this paper, a semi-supervised kernel affinity propagation method named SSKAPC is proposed. In this method, affinity propagation clustering method is extended to semi-supervised setting, in which background knowledge is provided in terms of pairwise constraints. Kernel trick is also used to process non-linear problem. The experimental results and comparisons on simulated and real-world datasets illustrate the effectiveness and the advantages of the proposed SSKAPC method.
出处 《江南大学学报(自然科学版)》 CAS 2008年第5期505-510,共6页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(60773206/F020106) 国防应用基础研究基金项目(A1420461266) 2004年教育部跨世纪优秀人才支持计划基金项目(NCET-04-0496) 2005年教育部科学研究重点基金项目(105087) 2006年江苏省6大人才高峰计划资助项目 中国科学院自动化研究所模式识别国家重点实验室开放课题 南京大学软件新技术国家重点实验室开放课题
关键词 信任力传播 半监督 核聚类 affinity propagation semi-supervised kernel clustering
  • 相关文献

参考文献20

  • 1Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means clustering with background knowledge [ C ~ JJ Brodley C E, Danyluk A P. Proceedings of the Eighteenth International Conference on Machine Learning. San Mateo, CA, USA: Morgan Kaufmann Press, 2001.
  • 2Klein D, Kamvar S D, Manning C D. From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering [ C ] // Sammut C, Hoffmann A G. Proceedings of the Nineteenth International Conference on Machine Learning. San Mateo, CA, USA: Morgan Kaufmann Press, 2002.
  • 3Basu S, Banerjee A, Mooney R J. Semi-supervised clustering by seeding[ C ]// Sammut C, Hoffmann A G. Proceedings of the Nineteenth International Conference. San Mateo, CA, USA: Morgan Kaufmann Press, 2002.
  • 4Bilenko M, Basu S, Mooney R J. Integrating constraints and metric learning in semi-supervised clustering[ C]// Brodley C E. Proceedings of the Twenty-first International Conference on Machine Learning. New York, USA: ACM Press, 2004.
  • 5Chang H, Yeung D Y. Locally linear metric adaptation for semi-supervised clustering [ C ] //Brodley C E. Proceedings of the Twenty-First International Conference on Machine Learning. New York, USA: ACM Press, 2004.
  • 6Basu S, Bilenko M, Mooney R J. A probabilistic framework for semi-supervised clustering[ C ]// Kim W, Kohavi R, Gehrke J, et al. Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2004.
  • 7何振峰,熊范纶.结合限制的分隔模型及K-Means算法[J].软件学报,2005,16(5):799-809. 被引量:23
  • 8王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 9罗晓清,王士同,徐红林.基于辅助空间与主空间合作的半监督聚类方法[J].计算机工程与应用,2007,43(23):177-180. 被引量:2
  • 10芮晓光,袁平波,何芳,俞能海.一种新的基于语义聚类和图算法的自动图像标注方法[J].中国图象图形学报,2007,12(2):239-244. 被引量:9

二级参考文献64

  • 1Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley C, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning (ICML 2001). San Francisco: Morgan Kaufmann Publishers, 2001.577-584.
  • 2Blake C, Merz J. UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.htmi
  • 3Klein D, Kamvar S, Manning C. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann A, eds. Proc. of the 19th Int'l Conf. on Machine Learning (ICML 2002). San Francisco:Morgan Kaufmann Publishers, 2002. 307-314.
  • 4Bottou L, Bengio Y. Convergence properties of the K-means algorithm. In: Tesauro G, Touretzky DS, Leen TK, eds. Advances in Neural Information Processing Systems 7. Cambridge: MIT Press, 1995.585-592.
  • 5Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part Ⅰ. SIGMOD Record, 2002,31(2):40-45.
  • 6Basu S, Banerjee A, Mooney R. Semi-Supervised clustering by seeding. In: Sammut C, Hoffmann A, eds. Proc. of the 19th Int'l Conf. on Machine Learning (ICML 2002). San Francisco: Morgan Kaufmann Publishers, 2002. 19-26.
  • 7Jain A, Murty M, Flynn P. Data clustering: A review. ACM Computing Surveys, 1999,31(3):264-323.
  • 8Wagstaff K. Intelligent clustering with instance-level constraints [Ph.D. Thesis]. Cornell University, 2002.
  • 9Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning (ICML 2000). San Francisco: Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 10Basu S, Banerjee A, Mooney R. Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering. In: Fawcett T, Mishra N, eds. Proc. of the 20th Int'l Conf. on Machine Learning (ICML 2003) Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. New Orleans: AAAI Press, 2003.42-49.

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部