期刊文献+

一种在线向量机增强学习算法 被引量:2

Learning Algorithm Based on Online LS-SVM
在线阅读 下载PDF
导出
摘要 为了在智能学习和改变规则的情况下,在线最小二乘法支持向量机可以高效地估计值函数,采用了一种基于最小二乘支持向量机的新算法,通过汽车过山地实例证明了在线最小二乘法支持向量机的优越性,验证了该方法的可行性和有效性,利用最小二乘支持向量机通过一系列线性方程求解,使得在线应用成为可能. An algorithm called Least Squares Support Vector Machine (L,S-SVM) is proposed in this paper, LS-SVM is solved by solving a set of linear equations which makes online implementation feasible. The online LS-SVM can efficiently estimate the value functions whenever the agent learns and changes its policy. To illustrate the favorable performance of the online LS-SVM, it is applied to the Mountain-Car task, verify the feasibility of the presented method and effectiveness.
作者 刘斌 王立梅
出处 《微电子学与计算机》 CSCD 北大核心 2008年第11期94-96,100,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(50405029)
关键词 在线 向量机 增强学习 online LS-SVM learning algorithm
  • 相关文献

参考文献6

  • 1裴学华,李朝峰.支持向量机和BP网络改进模型的性能对比研究[J].微电子学与计算机,2006,23(1):169-173. 被引量:3
  • 2Cristianini N,Shawe-Taylor J.支持向量机[M].北京:电子工业出版社,2004.
  • 3De Kruif B J, De Vries T J A. Pruning error minimization- in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003,14(3) :696 - 702.
  • 4Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines robusmess and sparse approximation[J]. Neurocomputing, 2002,48(1/4).85- 105.
  • 5Saunders C, Gammerman A, Vovk V. Ridge regression learning algorithm in dual variables [ C]//Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann, 1998:515 - 521.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J ]. Neural Processing Letters, 1999 (9) :293 - 300.

二级参考文献8

  • 1Atkinson P M, Tatnall A R L. Neural Networks in Remote Sensing. INT J Remote Sensing, 1997, 18(4): 699-709.
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 3C Cortes, V Vapnik. Support Vector Networks. Machine Learning, 1995, 20:273-297.
  • 4Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2).
  • 5Chapelle O, Haffner P, Vapnik V N. Support Vector Machines for Histogram-Based Image Classification. IEEE Trans on Neural Networks, 1999, 10(5): 1055-1064.
  • 6Berhard Scholkopf, Christopher J, et al. Advances in Kernel Methods: Support Vector Learning [M]. The MIT Press,1999.
  • 7Cecilio Angulo, Andreu Catala, K Svcr. A Multi-class Support Vector Machine. ECML, LNA11810, 2000:31-38.
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2289

共引文献2

同被引文献15

  • 1叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. 被引量:104
  • 2张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 3范玉刚,李平,宋执环.动态加权最小二乘支持向量机[J].控制与决策,2006,21(10):1129-1133. 被引量:34
  • 4Suykens J A K. Vandewale J. Least squares support vector machine classifiers. Neural Processing Letters, 1999,9 ( 3 ) :293 - 300.
  • 5王海涛.航空发动机非线性动态过程辨识技术研究[D].西安:空军工程大学,2010.
  • 6Vapnik V. The nature of statistical learning theory [M]Berlin.. Springer Verlag, 1995.
  • 7Scholkopf B, Smola A J, Williamson R, et al. New support vector algorithms [J]. Neural Computation, 2000, 12(5) :1207-1245.
  • 8Shivaswamy P, Jebara T. Maximum relative margin and data-dependent regularization [J]. Journal of Ma- chine Learning Research, 2010, 11(3): 747-788.
  • 9Yoon M, Yun Y, Nakayama H. A role of total margin in support vector machines [J] Proc Int Joint Conf Neural Network, 2003(3) : 2049-2053.
  • 10Belkin M, Niyogi P, Sindhwani V. Manifold regulari- zation: a geometric framework for learning from ex- amples [J]. Journal of Mackine Learning Research, 2006(7) : 2399-2434.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部