期刊文献+

用图像质量评价量实现的真实图像和计算机生成图像的鉴别方法 被引量:2

A New Approach to Distinguish Computer Generated Images from Real Images Using Image Quality Metrics
在线阅读 下载PDF
导出
摘要 真实图像和计算机生成图像的鉴别是数字图像盲取证中的一个重要问题。提出了一种真实图像和计算机生成图像的鉴别方法。借用模式识别中的二分类概念,采用图像质量评价量来建立模型,以捕获真实图像和计算机生成图像的统计差异,选用支持向量机作为分类器进行训练和测试。实验结果表明,该方法计算方便、实用性强、可靠性高。 Discrimination between real images and computer generated images is an important issue in digital image forensics. This paper proposed a new detection scheme to discriminate computer generated images from real images. The detection could be regarded as a two-class pattern recognition problem, and the model was established using image quality metrics (IQM) extracted from the given test image. This model could capture statistical differences between real images and computer generated images. Kernel-based Support Vector Machine (SVM) was chosen as a classifier to train and test the given images. Experimental results demonstrated that this new detection scheme had some advantages of easy calculation, wide applications and high reliability.
出处 《测绘科学技术学报》 北大核心 2008年第5期355-358,共4页 Journal of Geomatics Science and Technology
基金 国家自然科学基金(60473022)
关键词 真实图像 计算机生成图像 图像质量评价量 支持向量机 real images computer generated images image quality metrics support vector machine (SVM)
  • 相关文献

参考文献9

  • 1[1]LYU S,FARID H.How Realistic Is Photorealistic[J].IEEE Transactions on Signal Processing,2005,53(2):845-850.
  • 2[2]CHEN W,SHI Y Q,XUAN G.Identifying Computer Graphics Using HSV Color Model[C]∥IEEE International Conference,2007.
  • 3[3]AVCIBAS I,SANKUR B,SAYOOD K.Statistical Analysis of Image Quality Measures[J].Journal of Electronic Imaging,2002,11(4):206-223.
  • 4[4]AVCIBAS I,MEMON N,SANKURE B.Steganalysis Using Image Quality Metrics[J].IEEE Trans Image Processing,2003,12(2):221-229.
  • 5[5]Chang C C,Lin C J.LIBSVM:A Library for Support Vector Machines[DB/OL].(2008-04-01)[2008-08-11]http:∥www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.
  • 6[6]Columbia DVMM Research Lab.Columbia Photographic Images and Photorealistic Computer Graphics Dataset[DB/OL].(2005-02-05)[2008-08-12]http:∥www.ee.columbia.edu/ln/dvmm/downloads/PIM_PRCG_dataset/.
  • 7[7]CUTZU F,HAMMOUD R,LEYKIN A.Distinguishing Paintings from photographs[J].Computer Vision and Image Understanding,2005(100):249-273.
  • 8[8]MAHDIAN B,SAIC S.Detection of copy-move forgery using a method based on blur moment invariants[C]∥ Forensic Science International,2007.
  • 9崔霞,童学锋,宣国荣,黄聪.基于直方图频域矩的自然图像和计算机图形的鉴别//第七届全国信息隐藏暨多媒体安全学术大会会.南京,中国,2007,11:276-283.

共引文献1

同被引文献31

  • 1修吉宏,刘廷霞,刘钢,刘明.航空图像质量判别技术[J].红外,2004,25(12):5-10. 被引量:2
  • 2王茜,张增祥,牟凤云,易玲,王姣.“北京一号”小卫星影像质量及土地利用分类精度研究[J].中国矿业大学学报,2007,36(3):386-389. 被引量:17
  • 3SCHUELER C F,SALOMONSON V V.Landsat Image Data Quality Studies[J].Advances in Space Research,1985,5(5):1-11.
  • 4HILL J,AIFADOPOULOU D.Comparative Analysis of Landsat-5 TM and SPOT HRV-1 Data for Use in Multiple Sensor Approaches[J].Remote Sensing Environment,1990,34:55-70.
  • 5COHEN W B,MAIERSPERGER T K,YANG Z Q,et al.Comparisons of Land Cover and LAI Estimates Derived from ETM+and MODIS for Four Sites in North America:a Quality Assessment of 2000/2001 Provisional MODIS Products[J].Remote Sensing of Environment,2003,88(3):233-255.
  • 6YAMAGUCHI Y,FUJISADA H,TSU H,et al.Aster early Image Evaluation[J].Advances in Space Research,2001,28(1):69-76.
  • 7RYAN R,BALDRIDGE B,SCHOWENGERDT R A,et al.IKONOS Spatial Resolution and Image Interpretability Characterization[J].Remote Sensing of Environment,2003,88(1-2):37-52.
  • 8ASTRAND P J,BONGIORNI M,CRESPI M,et al.The potential of World View-2 for Ortho-Image Production within the“Control with Remote Sensing Programme”of the European Commission[J].International Journal of Applied Earth Observation and Geoinformation,2012,19:335-347.
  • 9AGUILAR M A,SALDAA M M,AGUILAR F J.Assessing Geometric Accuracy of the Orthorectification Process from GeoEye-1 and World View-2 Panchromatic Images[J].International Journal of Applied Earth Observation and Geoinformation,2013,21:427-435.
  • 10ZHANG Q,HAN Y,CAI Y Z.Novel Full-Reference Image Quality Assessment Metric Based on Entropy Fusion[J].Optik,2013,124:5149-5153.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部