期刊文献+

声发射信号分类研究

AE Signal Classification Research
在线阅读 下载PDF
导出
摘要 声发射信号具有时变的特征,对声发射信号进行短时分析技术,并采用快速傅里叶变换后提取信号的有效特征,进而采用fisher准则对信号特征数量进行压缩,最后采用神经网络技术对信号进行分类,分类结果表明这种方法对声发射信号特别有效。 In view of the time-varying characteristics of AE(Acoustic Emission) signals, the short-time analysis and FFT(Fast Fourier Transform) are used to extract the signal characteristics of effective. Then the fisher criterion is used to compress the number of signal. Finally the neural network is employed for signal classification. Classification results show that the method is particularly effective in terms of the AE signal.
作者 刘卫东 陶锐
出处 《电声技术》 2008年第11期35-38,共4页 Audio Engineering
基金 国家自然科学基金项目(50490273 50474068) "十一五"国家科技支撑计划(2006BAK04B02 2006BAK03B06) 国家重点基础研究发展规划(973)项目(2005CB221504)
关键词 声发射 短时分析 FISHER准则 神经网络 AE short-time analysis fisher criterion neural network
  • 相关文献

参考文献5

  • 1PROAKIS J G, MANOLAKIS D G. Digital signal processing principles, algorithms and applications[M]. 3rd ed. New York : Prentice Hall/Pearson, 2004.
  • 2XU Y, YAN G J Y, YAN G J. A reformative kernel fisher discriminant analysis[J]. Pattern Recognition,2004, 37(6) : 1299-1302.
  • 3BIAN Zhao-qi, ZHANG Xue-gong. Pattern recognition[M]. 2nd ed. Beijing:Tsinghua University Press,1999:223-226.
  • 4BARGA R, FRIESEL M, MELTON R. Classification of acoustic emission waveforms for nondestructive evaluation using neural networks[C]// Proceedings of SPIE International Symposium on Optical Engineering and Photonics in Aerospace Sensing in the Applications of Artificial Neural Networks. Orlando.. [s.n.], 1990,1294 : 545-556.
  • 5BRUZZONE L, ROLI F, SERPICO S B. Structured neural networks for signal classification[J]. Signal Processing, 1998,64 (3) :271-290.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部