期刊文献+

食品HACCP分类的BIRCH算法 被引量:3

BIRCH Algorithm of Food HACCP Classification
在线阅读 下载PDF
导出
摘要 食品卫生的HACCP自动分类要处理的数据集形状呈现多样性,对分类结果的准确性和专业性要求很高,已有的算法难以满足。该文基于经典BIRCH算法,结合多阈值思想和多代表点特征树思想,提出多阈值多代表点的BIRCH算法,增加了专业分类知识的指导,并对每一个代表点设立单独的阈值,使得该算法能适应各种形状的数据集,减少了聚类特征树重建次数,提高了算法的效率。 The HACCP data of food shows diversity shapes, its classification results on the accuracy and professionalism. The existed algorithms have been difficult to meet it. Based on the classic BIRCH algorithm, and the existed two algorithms multi-threshold and multi-representation points CF tree, a new multi-threshold and multi-representation BIRCH algorithm is designed, and the professional knowledge of the classification is added to guide set different variable thresholds to every representation points. Thus, the new algorithm can meet diversity data shapes, reduce the times of reconstruction of the CF tree, and improve the efficiency of the algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第23期59-61,共3页 Computer Engineering
基金 上海大学研究生创新基金资助项目"食品安全法规 标准文献信息平台建设--乳制品项目"(A.16-0108-07-001)
关键词 BIRCH算法 聚类特征树 多代表点 多阈值 BIRCH algorithm cluster feature tree multi-representation point multi-threshold
  • 相关文献

参考文献3

  • 1Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases[C]//Proc. of ACM-SIGMOD Int'l Conf. on'Management of Data. Seattle, Washington, USA: [s. n.], 1998: 73-84.
  • 2Zhang T, Ramakrishnan R, Livny M. BIRCH: An Efficient Data Clustering Method for Very Large Databases[C]//Proc. of the International Conference Management of Data. Montreal, Canada: [s. n.], 1996: 103-114.
  • 3黄添强,秦小麟,王金栋.多代表点特征树与空间聚类算法[J].计算机科学,2006,33(12):189-195. 被引量:5

二级参考文献33

  • 1Rumelhart DE, Zipser D. Feature discovery by competitive learning. Cognitive Science, 1985, 9:75-112
  • 2Kohonen T. Self-Organizing Maps. 3rd cd. New York: Springer-Vcrlag, 2001
  • 3Kohonen T. The self-organizing map. Proc. IEEE, 1990, 78(9):1464-1480
  • 4Hoppner F, Klawonn F, Kruse R. Fuzzy Cluster Analysis:Methods for Classification, Data Analysis, and Image Recognition. New York: Wiley, 1999
  • 5Yager R, Filer D. Approximate clustering via the mountain method, in IEEE Transactions on Systems, Man & Cybernetics,1994, 1279-1284
  • 6Dave R. Adaptive fuzzy c-shells clustering and detection of ellipses. IEEE Trans. Neural Netw,, 1992, 3(5):643-662
  • 7karypis G, Han E-H, Kumar V. CHAMELEON: A hicrarchical clustering algorithm using dynamic modeling. COMPUTER,1999, 32:68-75
  • 8Cherng J-S, Lo M-J. A hypergraph based clustering algorithm for spatial data sets. In:Proe. IEEE Int. Conf. Data Mining (ICDM'01). San Jose, California, USA, 2001.83-90
  • 9Dunham MH. Data mining introductory and advanced topics. Upper ,Saddle River, N.J. : Prentice Hall/Pearson Education, 2003.221-243
  • 10MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symposium in Mathematics. Univ. of California, Berkeley, USA: Statistics and Probability, 1967

共引文献4

同被引文献101

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部