期刊文献+

基于梯度矢量流与粒子群优化算法的多模态医学图像配准 被引量:1

Multimodal Medical Image Registration Based on Gradient Vector Flow and Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 目的研究用梯度矢量流与粒子群优化算法实现多模态医学图像配准,提高配准的精度。方法算法对图像配准的特征空间、相似性测度、搜索策略3个方面进行改进:先由原始图像产生梯度矢量流场,作为配准的特征空间;然后提出并计算3种基于梯度矢量流场的相似性测度;最后使用结合了遗传算法交叉机制的粒子群优化算法找到两幅图像的最优变换。结果对仿真及实际医学图像的54次配准实验,表明该方法配准精度优于基于像素的粒子群优化方法和Walsh变换法。结论基于梯度矢量流与粒子群优化算法的图像配准方法能有效地实现多模态医学图像的配准。 Objective To study the method based on gradient vector flow (GVF) and particle swarm optimization (PSO) for realizing multimodal medical image registration and improving its accuracy. Methods In view of three major components of image registration, i.e. the feature space, the similarity metric and the search strategy, a novel method was proposed with three improvements. Firstly, the GVF field was employed as the feature space. Then three similarity metrics were proposed based on GVF field. Finally, an improved PSO combined with crossover mechanism of genetic algorithm was utilized to search for the optimal transformation of two images. Results With 54 times of experiments on both simulated and real medical images, it was demonstrated that this method accurately registered the multimodal medical images to be superior to the method based on PSO of pixels, and the Walsh transform method. Conclusion The method based on GVF and PSO is effective for multimodal medical image registration.
作者 张麒 汪源源
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2008年第6期505-512,共8页 Space Medicine & Medical Engineering
基金 国家重点基础研究规划基金项目(2006CB705707) 国家自然科学基金项目(30570488) 上海市重点学科建设项目(B112)
关键词 图像配准 多模态医学图像 梯度矢量流 粒子群优化 image registration multimodal medical images gradient vector flow particle swarm optimization
  • 相关文献

参考文献17

  • 1Maes F,Collignon A, Vandermeulen D, et al. Multimodatity image registration by maximization of mutual information [J]. IEEE Trans Med Imag, 1997, 16(2): 187- 198.
  • 2Wachowiak MP, Smolikova R, Zheng Y, et al .An approach to multimodal biomedical image registration utilizing particle swarm optimization [J]. IEEE Trans Evolutionary Computation, 2004, 8(3): 289-301.
  • 3Gholipour A, Kehtarnavaz N, Briggs R, et al. Brain functional localization: a survey of image registration techniques [J]. IEEE Trans Med Imag, 2007, 26(4): 427- 444.
  • 4Brown LG. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4) : 326-376.
  • 5Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey [J]. IEEETrans Med Imag, 2003, 22(8): 986-1004.
  • 6秦斌杰,庄天戈.全局异常信号环境下基于体素灰度多模医学图像配准研究[J].航天医学与医学工程,2004,17(2):140-143. 被引量:5
  • 7Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment [J]. Pattern Recognition, 1999, 32(1): 71-86.
  • 8Cole-Rhodes AA, Johnson KL, LeMoigne J, et al. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient [ J ]. IEEE Trans Image Process, 2003, 12 (12) : 1495-1511.
  • 9Maintz JBA, EIsen P, Viergever MA. 3D multimodality medical image registration using morphological tools [J]. Image and Vision Computing, 2001, 19(1-2): 53- 62.
  • 10Lazaridis G, Petroulmage M. Image registration using theWalsh transform [J]. IEEE Trans Image Process, 2006, 15 ( 8 ) : 2343-2357.

二级参考文献8

  • 1Hill DLG, Batchelor PG, Holden M,et al.Medical image registration[J]. Physics in Medicine and Biology,2001, 46:R1-R45.
  • 2Erdi AK, Hu YC,Chui CS. Using mutual information (MI) for automated 3D registration in the pelvis and thorax region for radiotherapy treatment planning[C]. Hanson KM, ed. In Medical Imaging: Image Processing, Bellingham, WA:SPIE Press,2000.416-425.
  • 3Roche A,0Malandain G, Pennec X,et al.Multi-modal Image registration by maximization of the correlation ratio[R]. Technical Report 3378,INRIA, 1999.
  • 4Pluim JPW. Mutual information based registration of medical images[D]. Image Sciences Institute at the University Medical Center Utrecht, The Netherlands, 2000.
  • 5Studholme C, Hill DLG,Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment[J]. Pattern Recognition, 1999,24(1): 71-86.
  • 6West J, Fitzpatrick JM, Wang MY,et al. Comparison and evaluation of retrospective intermodality brain image registration techniques[J]. Journal of Computer Assisted Tomography,1997,21(4): 554-566.
  • 7秦斌杰,庄天戈.基于体素灰度三维多模医学图像配准中相似性测度的选取(英文)[J].航天医学与医学工程,2002,15(4):241-245. 被引量:4
  • 8秦斌杰,庄天戈.利用相关比相似性测度多分辨率配准MR和CT医学图像的方法[J].中国生物医学工程学报,2003,22(1):1-5. 被引量:4

共引文献4

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部