期刊文献+

基于退火遗传算法的水电站短期优化调度 被引量:9

Short-term optimal operation of hydropower station based on annealing genetic algorithm
在线阅读 下载PDF
导出
摘要 电力市场环境下,水电站短期优化调度对优化发电企业向电力市场申报的次日发电计划和最大化企业发电收益具有重要意义。为了提高短期优化调度的计算精度和效率,针对模拟退火算法和遗传算法的优缺点将两者结合起来形成退火遗传算法,改善其计算精度和速度。实例计算表明该方法是可行的。 In power market, the short-term optimal operation(STOO) of hydropower station is an important method for the electricity schedule fo maximize the income of the company. In order to improve the precision and efficiency of STOO, the annealing genetic algorithm(AGA)is presented which is based on simulated annealing algorithm and genetic algorithm, the convergence and solution quality are improved. The precision of AGA is better than standard genetic algorithm, the computed speed is faster than simulated annealing algorithm. The simulated computing result shows that the proposed method is effective.
出处 《水力发电学报》 EI CSCD 北大核心 2008年第6期18-21,共4页 Journal of Hydroelectric Engineering
基金 国家自然科学基金重点项目资助(50539140)
关键词 水电站 短期优化调度 退火遗传算法 hydropower station short-term optimal operation annealing genetic algorithm
  • 相关文献

参考文献6

  • 1Wong Kit Po. Solving Power System Optimization Problems Using Simulated Annealing[J]. Engineering Applications of Artificial Intelligence, 1995, (8) :665 - 670.
  • 2Dudek, Grzegorz. Unit commitment by genetic algorithm with specialized search operators[ J]. Electric Power System Research 2004,72 (3) : 299-308.
  • 3王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 4Cheng C P. Unit Commitment by annealing-genetic algorithm[J]. Electrical Power and Energy Systems, 2002,24(2) :149-158.
  • 5陶春华,马光文,涂扬举,唐明,王和康.基于退火遗传的旋转备用经济运行[J].水力发电学报,2006,25(6):16-20. 被引量:3
  • 6陶春华,马光文,涂扬举,徐刚,左幸.实码退火遗传算法在厂内经济运行中的应用[J].四川大学学报(工程科学版),2005,37(6):38-41. 被引量:19

二级参考文献11

  • 1王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002..
  • 2Cheng C P.Unit commitment by annealing-genetic algorithm[J].Electrical Power and Energy Systems, 2002,24(2):149~158.
  • 3Wong Kit Po.Solving power system optimization problems using simulated annealing[J].Engineering Applications of Artificial Intelligence, 1995,8(6):665~670.
  • 4Mantawy A H.A new genetic-based tabu search algorithm for unit commitment problem[J].Electric Power System Research, 1999,49(2):71~78.
  • 5Orero S O, Irving M R.A combination of the genetic algorithm and Lagrangian relaxation decomposition techniques for the generation unit commitment problem[J].Electric Power Systems Research, 1997,43(3):149~156.
  • 6Dudek,Grzegorz.Unit commitment by genetic algorithm with specialized search operators[J].Electric Power System Research, 2004,72(3):299~308.
  • 7Cheng C P.Unit Commitment by annealing-genetic algorithm[J].Electrical Power and Energy Systems,2002,24(2):149~ 158.
  • 8Wong Kit Po.Solving Power System Optimization Problems Using Simulated Annealing[J].Engineering APplications of Artificial Intelligence,1995,8 (6):665 ~ 670.
  • 9Mantawy A H.A new genetic-based tabu search algorithm for unit commitment problem[J].Electric Power System Research,1999,49(2):71 ~ 78.
  • 10Dudek,Grzegorz.Unit commitment by genetic algorithm with specialized search operators[J].Electric Power System Research,2004,72 (3):299 ~ 308.

共引文献124

同被引文献156

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部