期刊文献+

累积复合轧制工艺晶粒细化机制对1060工业纯铝组织和性能的影响 被引量:4

Effect of grain refining mechanism on the microstructure and mechanical properties of 1060 commercially pure aluminum in accumulative roll bonding
原文传递
导出
摘要 采用累积复合轧制(ARB)技术的两种工艺路径,研究变形后1060工业纯铝的显微组织和力学性能变化.结果显示:路径A的晶粒细化效果比路径B明显;ARB7道次后,采用路径A的试样的显微组织由拉长的细小纤维状晶粒组成,路径B的试样由扁平状晶粒组成;路径A和路径B的试样的平均晶粒尺寸分别为470nm和680nm;路径A的试样的抗拉强度提高程度大于路径B.1060工业纯铝在ARB过程中的强化机制主要是细晶强化.初步分析了ARB过程中材料的变形规律和细小晶粒的形成机制. Experiments were conducted to investigate the effect of grain refining mechanism on the microstructure and mechanical properties of 1060 commercially pure aluminum in accumulative roll bonding (ARB), in which two kinds of routes, Route A and Route B, were employed. The results show that the effectiveness of Route A is better than Route B. After ARB of 7 passes, the microstructure of the specimen by Route A consists of thin elongated fibriform grains with an average size of 470 nm, but that by Route B does compressed grains with an average size of 680 nm. The improvement in tensile strength by Route A is greater than that by Route B. The strengthening mechanism of 1060 commercially pure aluminum by ARB is fine-grain strengthening. The deformation rule and the formation mechanism of fine grains were analyzed elementarily in ARB process.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2008年第12期1378-1382,共5页 Journal of University of Science and Technology Beijing
关键词 工业纯铝 累积复合轧制 力学性能 显微组织 晶粒细化机制 commercially pure aluminums accumulative roll bonding (ARB) mechanical properties microstructure grain refining mechanism
  • 相关文献

参考文献15

  • 1Koch C C. Optimization of strength and ductility in nanocrys- talline and ultrafine grained metals. Scripta Mater, 2003, 49 (7) : 657.
  • 2Mishra R S, Valiev R Z, Mukherjee A K. The observation of tensile superplasticity in nanocrystalline materials. Nanostruct Mater, 1997(9) : 473.
  • 3Lee S H, Saito Y, Sakai T, et al. Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A, 2002, 325:228.
  • 4武晓雷.应变诱导晶粒细化与伸长率[J].材料热处理学报,2005,26(3):43-46. 被引量:7
  • 5Segal V M, Reznikov V I, Drobyshevskii A E, et al. Plastic metal working by simple shear. Metally, 1981, 1:115.
  • 6Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure. Mater Sci Eng A,1991, 137(15): 35.
  • 7Valiev R Z, IsIamgaliev R K. Bulk nanostruetural materials from severe plastic deformation. Prog Mater Sci, 2000, 45:103.
  • 8Andrey B, Kaneak/T, Yuuji K, et al. Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in a Fe-15 % Cr ferritic alloy. Mater Sci Eng A, 2007, 456(1/2) : 323.
  • 9Richert M, Liu Q, Hansen N. Microstructural evolution over a large strain range in aluminum deformed by cyclic extrusion compression. Mater Scl Eng A, 1999, 260- 275.
  • 10Tsuji N, Saito Y, Lee Seong H, et al. ARB (accumulative roll- bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater, 2003, 5(5) : 338.

二级参考文献13

  • 1Lu, K,Lu, J.Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach[J].Journal of Materials Science & Technology,1999,15(3):193-197. 被引量:309
  • 2SUNCai-yun,XIEJi-jia,WUXiao-lei,HONGYou-shi,LIUGang,LUJian,LUKe.In Situ Synthesis of Nanocrystalline Intermetallic Compound Layer during Surface Mechanical Attrition Treatment of Zirconium[J].材料热处理学报,2004,25(05B):1242-1246. 被引量:2
  • 3Segal V M, Reznikov V I, Drobyshevskii A E. Plasticheskaya Obrabotka Metallov prostym sdvigom (Plastic metal working by simple shear) [J]. MetaUy, 1981, 1: 115.
  • 4Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure [J]. Materials Science & Engineering A, 1991, 137(15): 35.
  • 5Valiev R Z, IsIamgaliev R K. Bulk nanostructural materials from severe plastic deformation [ J ]. Progress in Materials Science, 2000, 45: 103.
  • 6Richert M, Liu Q, Hansen N. Microstructural evolution over a large strain range in aluminum deformed by cyclic extrusion compression [J]. Materials Science Engineering A, 1999, 260: 275.
  • 7Tsuji Nobuhiro, Saito Yoshihiro, Lee Seong Hee. ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials [J]. Advanced Engineering Materials, 2003, 5(5): 338.
  • 8Saito Y, Tsuji N, Utsunomiya H. Ultra-fine grained bulk aluminum produced by accumulative roll bonding (ARB) process [J]. Scripta Materialia, 1998, 39(9): 1221.
  • 9Akihiro Yamashita, Daisuke Yamaguchi, Zenji Horita. Influence of pressing temperature on microstructural development in equal-channel angular pressing [J]. Materials Science and Engineering, 2000, A287: 100.
  • 10Jiang Honggang, Zhu Y Theodore, Butt Darryl P. Microstmctural evolution, microhardness and thermal stability of HPT-proceseed Cu [J]. Materials Science and Engineering, 2000, A290: 128.

共引文献8

同被引文献42

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部