摘要
应用同伦分析方法,研究了两自由度耦合vandel Pol振子周期解的问题。与传统方法不同,同伦分析方法不依赖于小参数,并提供了一个简便的途径确保级数解的收敛。比较同伦分析方法与四阶Runge-Kutta法(数值解)表明,通过同伦分析方法得到的四阶解析近似能有效地逼近数值解。
The periodic solutions for coupled van del Pol oscillators of two-degrees-of-freedom are studied by means of a new analytical method, the homotopy analysis method (HAM). The HAM is independent of small parameters. More importantly, unlike traditional techniques, the HAM provides a simple way to ensure the convergence of solution series. Comparisons are made between the results of the HAM and Runge-Kutta (numerical) method. It is shown that the fourth-order homotopy analysis solutions approach the numerical solutions effectively.
出处
《科技导报》
CAS
CSCD
2008年第22期21-25,共5页
Science & Technology Review
基金
国家自然科学基金项目(10732020)
浙江省高校青年教师资助计划项目