期刊文献+

两自由度耦合van del Pol振子周期解的同伦分析方法 被引量:2

Periodic Solutions for Coupled van del Pol Oscillators of Two-degrees-of-freedom by Homotopy Analysis Method
在线阅读 下载PDF
导出
摘要 应用同伦分析方法,研究了两自由度耦合vandel Pol振子周期解的问题。与传统方法不同,同伦分析方法不依赖于小参数,并提供了一个简便的途径确保级数解的收敛。比较同伦分析方法与四阶Runge-Kutta法(数值解)表明,通过同伦分析方法得到的四阶解析近似能有效地逼近数值解。 The periodic solutions for coupled van del Pol oscillators of two-degrees-of-freedom are studied by means of a new analytical method, the homotopy analysis method (HAM). The HAM is independent of small parameters. More importantly, unlike traditional techniques, the HAM provides a simple way to ensure the convergence of solution series. Comparisons are made between the results of the HAM and Runge-Kutta (numerical) method. It is shown that the fourth-order homotopy analysis solutions approach the numerical solutions effectively.
作者 钱有华 张伟
出处 《科技导报》 CAS CSCD 2008年第22期21-25,共5页 Science & Technology Review
基金 国家自然科学基金项目(10732020) 浙江省高校青年教师资助计划项目
关键词 动力学与控制 同伦分析方法 周期解 VAN DEL POL方程 dynamics and control homotopy analysis method periodic solution van del Pol equation
  • 相关文献

参考文献8

  • 1Liao S J. Beyond perturbation: Introduction to the homotopy analysis method[M]. Boca Raton, Chapman and Hall: CRC Press, 2003.
  • 2Liao Shijun. The proposed homotopy analysis techniques for the solution of nonlinear problems[D]. Shanghai: Shanghai Jiao Tong University, 1992.
  • 3Liao S J, Chwang A T. Application of homotopy analysis method in nonlinear oscillation[J|. ASME J Appl Mech, 1998, 65: 914-922.
  • 4Liao S J. An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude[J]. Int J Non-Linear Mech, 2003, 38(8): 1173-1183.
  • 5Liao S J. An analytic approximate approach for free oscillations of self- excited systems[J]. Int J Non-Linear Mech, 2004, 39(2): 271-280.
  • 6Wen J M, Cao Z C. Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method[J]. Physics Letters A, 2007, 371: 427-431.
  • 7Jianmin Wen,Zhengcai Cao.Nonlinear oscillations with parametric excitation solved by homotopy analysis method[J].Acta Mechanica Sinica,2008,24(3):325-329. 被引量:5
  • 8廖世俊.超越摄动:同伦分析方法基本思想及其应用[J].力学进展,2008,38(1):1-34. 被引量:31

二级参考文献13

共引文献33

同被引文献20

  • 1宋玉臣.股票价格均值回归理论研究综述[J].税务与经济,2006(1):73-74. 被引量:3
  • 2Van De Vrande B L. An approximate analysis of dry-frictioninduced stick-slip vibrations by a smoothing procedure [ J ]. Nonlinear Dynamics, 1999,19 : 157 - 169.
  • 3Galvanetto U. Some discontinuous bifurcations in a two-block stick-slip system[ J ]. Journal of Sound and Vibration, 2001, 248 : 653 - 669.
  • 4Leine R I. Stick-slip vibratio induced by ahernate friction models [ J ]. Nonlinear Dynamics, 1998,16 : 41 - 54.
  • 5Metrikin V S. Periodic and stochastic self-excited oscillations in a system with hereditary-type dry friction [ J ]. J. Appl. Maths Mechs, 1996,60:845 - 850.
  • 6McMillan A J. A non-linear friction model for self-excited vibration[ J ]. Journal of Sound and Vibration, 1997,205 : 323 - 335.
  • 7Thomsen J J,Fidlin A. Analytical approximations for stick. slip vibration amplitudes [ J ]. International Journal of Non- Linear Mechanics, 2003,38 : 389 - 403.
  • 8Awrejcewicz J, Pyryev Y. Dynamics of a two-degrces-of-freedom system with friction and heal generation [J]. Communications in Nonlinear Science and Numerica Simulation, 2006,11 : 635 - 645.
  • 9Kunze M, Kupper T. Qualitative bifurcation analysis of non-smooth friction-oscillator model [J]. Z. Angew Math. Phys, 1997,48:87 - 101.
  • 10Masiani R, Capecchib D, Vestroni F. Resonant and coupled response of hysteretic two-dof systems using harmonic balance. method[J]. International Journal of Non-Linear Mechanics. 2002,37 : 1424 - 1434.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部