期刊文献+

基于表层水分含量指数(SWCI)的土壤干旱遥感监测 被引量:13

Drought Remote Sensing Monitoring Based on the Surface Water Content Index(SWCI) Method
在线阅读 下载PDF
导出
摘要 土壤湿度弄口植被生长状况是干旱最重要和最直接的指标,对植被和土壤光谱特征的解译是进行旱情程度判断的重要因子。近期,基于水的光谱反射特性,提出的地表含水量指数(SWCI)模型能较好地反映地表的含水量值及其变化,可用于大范围的、快速的浅层土壤墒情遥感监测。通过与NDVI对比分析发现,在对浅层(0-50cm)土壤水分进行监测时,SWCI比NDVI更为敏感,这有助于在实时干旱动态监测中更好地采用不同的指数以提高监测精度。 Soil Moisture and Vegetation Growth are the most important and direct index in drought monitoring, and the spectral interpretation of vegetation and soil are serious factors in the judgment of drought degree. Based on the spectral character of water,recently,a new model of Surface Water Content Index(SWCI) has been put forward, and the index is more sensitive to the surface water content,and suit for regional drought monitoring. The comparative analysis showed that SWCI is more sensitive than NDVI to monitoring surface soil water content, it is available in real-time soil drought monitoring.
出处 《遥感技术与应用》 CSCD 2008年第6期624-628,I0002,共6页 Remote Sensing Technology and Application
基金 “十一五”国家科技支撑计划项目(2006BAD04B01) 风云三号卫星遥感开发与应用项目(20070806-FiDAFS-1-01) 河南省气象局重点科研项目(Z200506、Z2008019、Z200806)联合资助
关键词 地表含水量指数(SWCI) 归一化植被指数(NDVI) 干旱遥感监测 Surface Water Content Index (SWCI) Normalized Difference Vegetation Index (NDVI) Drought remote sensing monitoring
  • 相关文献

参考文献20

  • 1Di L, Rundquist D C, Han L. Modeling Relationships Between NDBI and Precipitation During Growth Cycle[J]. International Journal of Remote Sensing,1994,5(10) :2121-2136.
  • 2Kogan F N. Remote Sensing of Weather Impacts on Vegetation in Non-omogeneous Areas[J]. International Journal of Remote Sensing, 1990,11(8) : 1405-1419.
  • 3Liu W, Ferreira A. Monitoring Crop Production Regions in the Sao Paulo State of Brazil Using Normalized Difference Vegetation Index[C]. Proc. 24th. International Symposium on Remote Sensing of Environment, Rio de Janeiro, Brazil, 1991, (2):447-455,27-31.
  • 4Peters A J, Walter-Shea E A , Lei J , et al. Drought Monitoring with NDVI-based Standardized Vegetation Index [J]. Photogrammetrie Engineering and Remote Sensing, 2002,65 (1):71-75.
  • 5Unganai L S , Kogan F N. Drought Monitoring and Corn Yield Estimation in Southern Africa from AVHRR Data[J]. Remote Sensing of Environment,1998,63(3) :219-232.
  • 6Yang L,Wylie B K,Tieszen L L,et al. An Analysis of Relationships among Climate Forcing and Time-integrated NDVI of Grasslands over the U. S. Northern and Central Great Plains[J]. Remote Sensing of Environment, 1998.65(1) :25-37.
  • 7Nemani R,Priee L,Running S,et al. Developing Satellite Derived Estimates of Surface Moisture Status[J]. Journal of Applied Meteorology, 1993,32 (3): 548-557.
  • 8Carlson T N, Ripley D A. On the Relation Between NDVI, Fractional Vegetation Cover and Leaf Area Index[J]. Remote Sensing of Environment, 1997,62 (3):241-252.
  • 9Ceccato P,Gobron N,Flasse S,et al. Designing a Spectral Index to Estimate Vegetation Water Content from Remote Sensing Data :Part 1, Theoretical Approach[J]. Remote Sensing of Environment,2002,82(2/3) :188-197.
  • 10Du X,Zhou Y,Wang S X,et al. Monitoring and Spatio Temporal Evolution Researching on Vegetation Leaf Water in China[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, Alaska, USA, 2004.

二级参考文献24

共引文献262

同被引文献197

引证文献13

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部