期刊文献+

基于SVDD的渐进直推式支持向量机学习算法 被引量:9

SVDD Based Learning Algorithm with Progressive Transductive Support Vector Machines
原文传递
导出
摘要 针对半监督学习中渐进直推支持向量机(PTSVM)算法每次标注的样本数太少、训练速度慢、回溯式学习多、学习性能不稳定的问题,提出一种快速的渐进直推支持向量机学习算法.该算法利用支持向量的信息,基于支持向量域描述(SVDD)选择新标注、无标签的样本点,以区域标注法代替 PTSVM 的成对标注法,不仅继承了其渐进赋值和动态调整的规则,而且在保持甚至提高算法精度的同时,大大提高算法速度.在人工模拟数据和真实数据上的实验结果表明该算法的有效性. In semi-supervised learning, progressive transductive support vector machine (PTSVM) has some drawbacks, such as few sample labeled in each iteration, low training speed, many backtrack learning steps, and unstable learning performance. Aiming at these problems, a fast progressive transductive support vector machines learning algorithm is proposed. It selects new unlabeled samples based on support vector domain description (SVDD) by using the information of support vectors. Using region labeling rule instead of pairwise labeling rule of PTSVM, the algorithm inherits progressive labeling and dynamic adjusting of the PTSVM. And meanwhile it increases the computational speed and keeps even improves the accuracy. Experimental results on synthetic and real datasets show the validity of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第6期721-727,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60574075,60703118)
关键词 半监督学习 支持向量机 直推式学习 支持向量域描述(SVDD) Semi-Supervised Learning, Support Vector Machines, Transductive Learning, Support Vector Domain Description (SVDD)
  • 相关文献

参考文献13

  • 1Vapnik V N. Statistical Learning Theory. New York, USA : Wiley, 1998
  • 2Bennett K, Demiriz A. Semi-Supervised Support Vector Machines //Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 1999, 11 : 368 - 374
  • 3Chapelle O, Vapnik V, Weston J. Transductive Inference for Estimating Values of Functions// Kearns M S, Solla S A, Cohn D A, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1999, 11:421-427
  • 4Joachims T. Transductive Inference for Text Classification Using Support Vector Machines// Proc of the 16th International Conference on Machine Learning. Bled, Slovenia, 1999 : 200 - 209
  • 5赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 6Chen Yisong, Wang Guoping, Dong Shihai. Learning with Progressive Transductive Support Vector Machines. Pattern Recognition Letters, 2003, 24(12) : 1845 - 1855
  • 7沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 8廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 9Tax D M J, Duin R P W. Support Vector Domain Description . Pattern Recognition Letters, 1999, 20 ( 11 / 12/13 ) : 1191 - 1199
  • 10Ding Ailing, Liu Fang, Li Ying. Pre-Extracting Support Vector by Adaptive Projective Algorithm//Proc of the 6th International Conference on Signal Proceedings. Beijing, China, 2002, Ⅰ: 21 -24

二级参考文献21

  • 1Joachims T.Transductive inference for text classification using support vector machines[C]/ / Proceeding of the 16th international conference on machine learning.San Francisco:Morgan Kaufmann,1999.200-209.
  • 2Wang Y,Sangteng H.Traing TSVM with the proper number of positive samples[J].Pattern Recognition Letters,2005,26:2187-2194.
  • 3Yisong C,Guoping W,Dong Shihai.Learning with progressive transductive support vector machine[J].Pattern Recognition Letters,2003,24(12) 1845-1855.
  • 4Joachims T.Transductive learning vis spectral graph partitioning[C]/ / International Conference on Machine Learning.Washington:[s.n].2003,290-297.
  • 5Zelikovitz S.Transductive LSI for short text classification problems[C]/ / 7th International Florida Artificial Intelligence Research Symposium Conference.Miami:AAAI Press,2004.
  • 6Ailing D.Pre-extracting support vector by adaptive projective algorithm[J].International Conference on Signal Proceedings.2002,(1):21-24.
  • 7Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,2000.
  • 8Vapnik V N.Statistical learning theory[M].New York:John Wiley and Sons,1998.
  • 9Burges C J C.A tutorial on support vector machines for pattern recognition[M].Boston:Kluwer Academic Publishers,1998.
  • 10Gammerman A,Vapnik V N,Vowk V.Learning by transduction[C]∥ Proceedings of the 14th International Conference on Uncertainty in Artificial Intelligence,Wisconsin,1998:148-156.

共引文献21

同被引文献93

  • 1芮挺,沈春林,丁健,QiTIAN.基于最佳鉴别变换的HMM手写数字字符识别[J].中国图象图形学报(A辑),2004,9(8):1008-1013. 被引量:3
  • 2鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 3王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 4李东,陈松林.基于模糊集理论的某雷达发射机故障诊断与实现[J].安徽工业大学学报(自然科学版),2007,24(3):305-308. 被引量:2
  • 5Pinheiro A M G. Image description using scale-space edge pixel directions histogram[C]//Proceedings of the Second Inter- national Workshop on Semantic Media Adaptation and Person- alization. Piscataway, NJ, USA: IEEE, 2007:211-218.
  • 6Lin Y Y, Liu T L, Chen H T. Semantic manifold learning for image retrieval[C]//Proceedings of the Annual ACM International Conference on Multimedia. New York, NJ, USA: ACM, 2005: 249-258.
  • 7Yu J, Tian Q. Learning image manifolds by semantic subspace projection[C]//Proceedings of the Annual ACM International Conference on Multimedia. New York, NJ, USA: ACM, 2006: 297-306.
  • 8Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380.
  • 9Zhou X S, Huang T S. Relevance feedback in image retrieval: A comprehensive review[J]. Multimedia Systems, 2003, 8(6): 536-544.
  • 10Chapelle O, Scholkopf B, Zien A. Semi-supervised learn- ing[M]. Cambrige,/VIA, USA: MIT Press, 2006.

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部