期刊文献+

刚柔耦合动力学的建模方法 被引量:48

Modeling Methods of Rigid-Flexible Coupling Dynamics
在线阅读 下载PDF
导出
摘要 对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面. A brief review about several phases and present status of flexible multi-body dynamics was given and the existing modeling methods of rigid-flexible coupling dynamics were summarized. Five indexes, including scientific index, general index, identifiable index, compatible index and efficient index, were proposed to evaluate the existed modeling methods. It shows that the existed modeling methods can not satisfy the actual needs of engineering application and new modeling method which satisfies all the evaluating indexes should be investigated. The research targets including modeling theory, computational methods and experiments were suggested for the rigid-flexible coupling dynamics of the flexible multi-body systems.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第11期1922-1926,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10772113) 高等学校博士学科点专项科研基金资助项目(20040248013)
关键词 刚柔耦合系统 动力学 建模方法 评价指标 rigid-flexible coupling systems dynamics modeling methods evaluating index
  • 相关文献

参考文献16

  • 1洪嘉振.计算多体动力学[M].北京:高等教育出版社,1999.
  • 2Schiehlen W. Multibody system dynamics: Roots and perspectives[J]. Multibody System Dynamics, 1997 (1) : 149-188.
  • 3Wasfy T M, Noor A K. Computational strategies for flexible multibody systems [ J ]. Appl Mech Nev, 2003, 56(6): 553-613.
  • 4Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2) : 139-151.
  • 5LIU Jin-yang, HONG Jia zhen. Dynamic modeling and modal truncation approach for a high-speed rotaring elastic beam[J]. Archive of Applied Mechanics, 2002, 72: 554-563.
  • 6YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling of a flexible hub-beam system with a tip mass[J]. Journal of Sound and Vibration, 2003, 266 :759-774.
  • 7Banerjee A K. Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints[J]. Journal of Guidance, Control and Dynamics, 1994,16(6) :1092-1100.
  • 8Mayo J, Dominguez J. Geometrically nonlinear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness[J]. Computers & Structures, 1996, 59: 1039-1050.
  • 9Zhang D J, Huston R L. On dynamic stiffening of flexible bodies having high angular velocity[J]. Mech Struct and Mach, 1996, 24(3) : 313-329.
  • 10Liu A Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexible multibody system[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 114: 379-396.

二级参考文献4

  • 1杨辉.刚-柔耦合动力学系统的建模理论与实验研究.[博士论文].上海:上海交通大学,2000
  • 2Shabana AA,Hussien H,Escalona J.Application of the absolute nodal coordinate formulation to large rotation and large deformation problems.Journal of Mechanical Design,1998,120:188~195
  • 3Berzeri M,Shabana AA.Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation.Journal of Sound and Vibration,2000,235(4):539~565
  • 4刘锦阳,洪嘉振.刚-柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408-415. 被引量:45

共引文献30

同被引文献407

引证文献48

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部