期刊文献+

以地质统计方法推估上海第三承压含水层渗透系数的分布 被引量:14

Geostatistical analysis for estimating the spatial variability of hydraulic conductivity in the third confined aquifer of Shanghai City
在线阅读 下载PDF
导出
摘要 本文采用地质统计方法分析上海第三承压含水层渗透系数的空间变异性。将取对数后的渗透系数作为区域化变量,计算各个方向的试验变差函数,进行理论变差函数模型拟合,以分析含水层空间结构并判定含水层可能的各向异性。变差函数模型经交互验证后,再采用普通Kriging法进行空间插值获得该含水层的渗透系数空间分布。研究结果表明:对数渗透系数在空间上具有明显的几何各向异性,大约在北偏东30°方向有最小的变异性,而在东偏南30°方向具有最大的变异性,这与含水层形成的水文地质环境具有密切关系。 The object of this study is to evaluate the spatial distribution of hydraulic conductivity in the third confined aquifer of Shanghai City. The hydraulic conductivity is considered as a regionalized variable. Then the structure of spatial variation could be established by using the GSLIB software to calculate the theoretical variogram of experimental data for generating the variogram model of spatial directions. After cross validation, ordinary Kriging analysis was provided to expand the spatial variation of hydraulic conductivity and reflect the anisotropic variability in contour map. Results showed that the log of hydraulic conductivity has strongly anisotropic variability and illustrated the minimum variation along the N30°E direction and the maximum variation along the E30°S direction. The anisotropic of topography in such area is controlled by its hydrogeology factor while aquifer was forming.
出处 《工程勘察》 CSCD 北大核心 2009年第1期36-41,共6页 Geotechnical Investigation & Surveying
基金 国家自然科学基金(批准号40702037) 南京大学人才引进科研启动基金项目资助
关键词 空间变异性 各向异性 交互验证 Kriging法 上海 Spatial Variability Anisotropic Cross-validation Kriging Shanghai
  • 相关文献

参考文献16

  • 1Chiles, J.P. and P. Delfiner, Geostatistics: modeling spatial uncertainty, pp.283-287, John Wiley & Sons INC., New York, 1999.
  • 2Delhomme, J.E, Kriging in hydroscience, Advance in Water Resources,1978, 1(5):251-226.
  • 3Delhomme, J.P., Spatial variability and uncertainty in groundwater flow parameters: a geostatical approach, Water Resource Research, 1979, 5(2):269-280.
  • 4Detach, C.V. and A.G Journel, GSLIB: Geostatistical Software Library and User's Guide, Oxford University Press, New York, 1998.
  • 5Eggleston, J.R, S.A. Rojstaczer, and J.J. Peirce, Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod Data Set, Water Resource Research, 1996, 32(5): 1209-1222.
  • 6Eggleston, J.R, and S.A. Rojstaczer, Identification of large-scale hydraulic conductivity trends and the influence on contaminant transport, Water Resource Research, 1998, 34(9): 2155-2168.
  • 7Freeze, R.A., A stochastic-conceptual analysis of one-dimension groundwater flow in nonuniform homogeneous media, Water Resource Research, 1975, 11(5):725-741.
  • 8Isaaks,E.H. and R.M. Srivastava, An introduction to applied geostatisties, Oxford University Press Inc., 1989.
  • 9Journel, A. G, and C. J. Huijbregts. Mining geostatistics. Academic Press, New York, 1978.
  • 10Kitanidis, EK., Introduction to geostatistics: applications to hydrogeology, Cambridge Univ. Press, New York, 1997.

二级参考文献43

  • 1李恩羊,袁新.作物需水量的最优估计[J].水利学报,1989,21(10):45-49. 被引量:19
  • 2施小清,吴吉春,袁永生.渗透系数空间变异性研究[J].水科学进展,2005,16(2):210-215. 被引量:61
  • 3杜强,康永尚,万力,胡伏生.渗透性参数非均质特征的研究进展[J].地学前缘,1996,3(2):182-190. 被引量:11
  • 4刘廷玺,硕士学位论文,1992年
  • 5朝伦巴根,水资源系统程序包,1991年
  • 6王仁铎,线性地质统计学,1988年
  • 7雷志栋,水利学报,1985年,9期,10页
  • 8ARMSTRONG M, DOWD p A. Geostatistical Simulation [M]. Kluwer Academic Publishers.1998.
  • 9DEUTSCH C V, JOURNEL A G. Geostatistical Software Library and Uses Guide [M]. Znded. Oxford: Oxford University Press, 1997.
  • 10DAGAN G. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, conditional simulation and the direct problem[J]. Water Resources Research,1982,18(4):813-833.

共引文献49

同被引文献117

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部