期刊文献+

液压伺服阀的热力学模型研究及数字仿真 被引量:5

Thermal-hydraulic Modeling and Simulation of Hydraulic Servo Valve
在线阅读 下载PDF
导出
摘要 以能量守恒原理为基础推导了控制体内温度变化的计算公式,结合伺服阀的压力流量特性,提出了建立伺服阀热力学模型的方法。对包含一个四通滑阀的液压系统进行建模和仿真,仿真结果表明,模型可以很好的反映阀在各种工况下的动态热力特性,对提高液压系统热力学建模及仿真的精度具有较好的参考意义。 The formula of temperature change in control volume was derived based on conservation of energy. Based on that and the pressure flow characteristic of servo valve, a kind of precisely modeling approach to the study of the servo valve was presented. The modeling strategy was used in a hydraulic system containing the four-port slide valve. The simulation result shows that the dynamic thermal-hydraulic characteristic of servo valve on various working condition is precisely predicted, which provides references to increase the modeling and simulation precision of hydraulic system.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第2期340-343,347,共5页 Journal of System Simulation
基金 国家自然科学基金(60572172)
关键词 热液压 伺服阀 温度 仿真 thermal-hydraulic servo valve temperature simulation
  • 相关文献

参考文献11

二级参考文献29

  • 1戚志东,朱新坚,朱伟兴.基于模糊规则优化的改进FGA算法[J].小型微型计算机系统,2005,26(1):46-49. 被引量:6
  • 2张志凯,刘宝铎.变矩器闭锁离合器充油特性的设计[J].兵工学报(坦克装甲车与发动机分册),2000(3):37-42. 被引量:6
  • 3葛思华,李新忠,李兵,丁崇生.伺服阀前油液压力脉动及其因果研究[J].机床与液压,1994(3):143-146. 被引量:7
  • 4[7]Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks [J]. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309.
  • 5[1]He W. Operating Characteristics of a Molten Carbonate Fuel Cell Power-Generation Syatems [J]. International Journal of Energy Research, Res 23, 1999, 1331-1344.
  • 6[2]CAO Guang-yi, Masumi Masubuchi. Dynamic Modeling and Response in Molten Carbonate Fuel Cell [J]. Transactions of the Japan Society of Mechanical Engineers (JSME), 1991, 57, 535(B), 837-842.
  • 7[3]Lee J H, Lalk T R. Model Fuel Cell Stack Syatems [J]. Journal of Power Sources, 1998, 73: 229-241.
  • 8[4]Warwick K. An Introduction to Radial Basis Functions for System Identification: A Comparison with other Neural Network Methods [A]. Proceedings of the 35th Conference on Decision and Control [C], Kobe, Japan, December, 1996. 464-469.
  • 9[5]Ai-Amoudi A, Zhang L. Application of Radial Basis Function Network for Solar-array Modeling and Maximum Power-point Prediction [J]. IEE Pro-Gener, Transm Distrib, 2000, 147(5): 310-316.
  • 10[6]Abido M A, Abdel-Magid Y L. On-line Identification of Syn- chronous Machines Using Radial Basis Function Neural Networks [J]. IEEE Transactions on Power Systems, 1994, 12(4): 1500-1506.

共引文献73

同被引文献92

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部