期刊文献+

关于序列式次中紧空间的刻画 被引量:1

Some Characterizations of Sequential Submesocompactness
在线阅读 下载PDF
导出
摘要 文章借助于Junnila技巧研究序列式次中紧空间。利用σ-闭包保持闭加细刻画了序列式次中紧空间,作为应用,闭序列覆盖映射保持序列次中紧性。 The sequential submesocompact spaces is studied by use of the technique invented by H. J. K. Junnila. The sequential submesocompactness is characterized by σ-clousure-preserving closed refinement. As an application, it is proved that the closed sequence-covering mappings preserve sequnential submesocompactness.
作者 张学茂
出处 《四川理工学院学报(自然科学版)》 CAS 2009年第1期11-14,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 序列次中紧 σ-闭包保持闭加细 序列覆盖映射 sequential submesocompactness o--clousure-preserving closed refinements sequence-covering mappings
  • 相关文献

参考文献2

二级参考文献16

  • 1Kelley J L. General Topology [M]. New York, 1955.
  • 2Boone J R. Some characterizations of paracompactness in k-spaces [J]. Fund. Math., 1971, 72: 145-155.
  • 3Boone J R. A note on mesocompact and sequentially mesocompact spaces [J]. Pacific J. Math., 1973, 44:69-74.
  • 4Boone J R. On k-qnotient mappings [J]. Pacific J. Math., 1974, 51: 369-377.
  • 5Lewis L W. On covering properties of subspaces of R. H. Bing's Example G. [J]. Gen. Top. Appl., 1977,7: 109-122.
  • 6Mancuso V J. Mesocompactness and related properties [J]. pacific J. Math., 1970, 33: 345-355.
  • 7Kao Kuo-shih, Wu Li-sheng. Mapping theorems on mesocompact spaces [J]. Proc. Amer. Math. Soc.,1983, 89: 355-358.
  • 8杨长诚.中紧性及其推广[J].四川大学学报(硕士论文汇集),1987,(1):25-27.
  • 9Junnila H J K. On submetacompactness [J]. Topology Proc. 1978, 3: 375-405.
  • 10Krajewski L L. Expanding locally finite collections [J]. Canad. J. Math., 1971, 23: 58-68.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部