期刊文献+

基于BP神经网络的灰色自记忆径流预测模型 被引量:19

Grey self-memory model based on BP neural network for annual runoff prediction
原文传递
导出
摘要 提高径流预测精度在于对有限径流序列所包含的信息进行充分挖掘。针对灰色、灰色自记忆建模中存在的缺陷,基于组合预测思想,借助BP神经网络方法处理灰色自记忆模型仍存在的误差,建立了基于BP神经网络的灰色自记忆径流预测模型,并应用于新疆和田玉龙喀什河同古孜洛克水文站年径流预测中,结果表明改进后的灰色自记忆模型具有更好的拟合与预报精度,是一种有效的征流预测方法。 The key problem of improving the accuracy of runoff prediction is safficiently to dig the information included in the sample series. For the defect of the grey and grey self-memory model, on account of integrative prediction, the BP neural network is used to deal with the error existed in grey self-memory model, then the grey self-memory model based on BP neural network is developed. It is shown that the model has better prediction accuracy and may be used for annual runoff prediction.
出处 《水力发电学报》 EI CSCD 北大核心 2009年第1期68-71,77,共5页 Journal of Hydroelectric Engineering
基金 国家自然基金(50579063 50779052)
关键词 水资源 年径流 灰色理论 自记忆原理 神经网络 water resources annual runoff gray theory self-memory principle neural network
  • 相关文献

参考文献5

二级参考文献40

共引文献320

同被引文献172

引证文献19

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部