期刊文献+

汽车侧偏角估计方法比较 被引量:14

Comparison of Methods for Estimating Vehicle Side Slip Angle
在线阅读 下载PDF
导出
摘要 针对汽车质心侧偏角难以直接获取的问题,提出了基于径向基神经网络与驾驶员-汽车闭环系统相结合的侧偏角估计方法。把汽车侧偏角看作横摆角速度和侧向加速度时间序列的映射,采用均匀设计方案对训练样本进行优选,通过神经网络建立三者之间的映射关系。同时设计了一种改进自适应卡尔曼滤波算法,将其运用到相同道路输入下汽车侧偏角的估计当中。对两种方法进行了基于实车试验的比较:神经网络方法的估计误差均值和标准差分别为0.046333°、0.057 822;°自适应卡尔曼滤波方法的估计误差均值和标准差分别为0.062 745°、0.089 241°。研究结果可以为汽车稳定性控制系统估计器的设计提供理论指导。 Aiming at the problem that vehicle side slip angles are difficult to measure directly, a radial basis function (RBF) based neural network method is proposed to estimate side slip angles combined with driver-vehicle closed-loop system. Vehicle side slip angle is considered as mapping of time series of yaw rate and lateral acceleration. A uniform design project is used to select training samples, and the relationship of the three state parameters is established through neural network. An improved adaptive Kalman filter algorithm is designed to estimate vehicle side slip angles in the Same road in- put. The two methods are compared based on full vehicle test: the average error and the standard deviation of RBF neural network method is 0. 046 333°and 0.057 822° respectively. The average error and the standard deviation of Kalman filter method is O. 062 745°and 0. 089 241° respectively. The conclusions can provide theoretic direction for design of estimator in vehicle stability control system.
作者 林棻 赵又群
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2009年第1期122-126,131,共6页 Journal of Nanjing University of Science and Technology
基金 高等学校博士学科点专项科研基金项目(20040287004)
关键词 汽车 侧偏角 径向基函数 神经网络 自适应卡尔曼滤波 状态估计 vehicles side slip angles radial basis functions neural network adaptive Kalman fil- ter state estimation
  • 相关文献

参考文献8

  • 1Akitaka N. Development of vehicle stability control based on vehicle sideslip angle estimations[ A]. SAE Paper[C]. Warrendale, USA: SAE, 2001.
  • 2Shinmoto Y, Takagi J, Egawa K, et al. Road surface recognition sensor using an optical spatial filter [ A ]. Proceedings of Conference on Intelligent Transportation Systems[C]. Boston: IEEE,1997. 1 000-1 004.
  • 3Arndt C, Karidas J, Busch R. Estimating non-measured vehicle states with an extended linearised Kalman filter [ J ]. Review of Automotive Engineering, 2005, 26(1) : 91 -98.
  • 4Joanny S, Ali C. Virtual sensor: Application to vehicle sideslip angle and transversal forces[ J ]. IEEE Transactions on Industrial Electronics, 2004, 51(2) : 278 -289.
  • 5施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29
  • 6林棻,赵又群.基于遗传算法的驾驶员-汽车闭环系统行驶方向稳定性研究[J].机械科学与技术,2006,25(10):1151-1153. 被引量:5
  • 7方开泰 马长兴.正交与均匀设计[M].北京:科学出版社,2001..
  • 8宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社,1988.

二级参考文献10

  • 1邱志平,陈望寰,周振平.对称区间矩阵标准特征值问题的一种新算法[J].吉林工业大学学报,1994,24(3):62-66. 被引量:10
  • 2Aleksander Hac, Simpson Melinda D. Estimation of Vehicle Side Slip Angle and Yaw Rate. SAE Paper 2000 - 01 - 0696.
  • 3Matthew Brach R, Brach Raymond M. Modeling Combined Braking and Steering Tire Forces. SAE Paper 2000- 01 -0357.
  • 4Hideaki Sasaki, Takatoshl Nishlmaki. A Side-sllp Angle Estimation Using Neural Network for a Wheeled Vehicle. SAE Paper 2000 - 01- 0695.
  • 5Joost Zuurbier, Paul Bremmer. State Estimation for Integrated Vehicle Dynamics Control. 2002 IV International Meetlng,Paris. 2002.
  • 6Raf Klein, Armin Daiβ, Herberl Eichfeld. Amilock braking System and Vehicle Speed Estimation Using Fuzzy Logic. Fuzzy Application Library of Matlab 6.0,2001.
  • 7Kiencke U, Nielsen L.. Aulomotive Control Systems. Springer-verlag Berlin Heidelberg New York,2000.
  • 8Qiu Z P,Chen S H,Elishakoff I.Natural frequencies of structures with uncertain but nonrandom parameters[J].Journal of Optimization Theory and Applications,1995,86(3):669~683
  • 9郭孔辉,管欣.汽车性能设计技术的进展[J].中国机械工程,1997,8(1):94-96. 被引量:9
  • 10张景绘,何彩英.不确定性振动凸集理论的研究[J].力学进展,1998,28(3):310-322. 被引量:4

共引文献55

同被引文献133

引证文献14

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部