期刊文献+

基于小波分解的织物疵点检测 被引量:4

Fabric Defect Detection Based on Wavelet Decomposition
在线阅读 下载PDF
导出
摘要 根据小波在奇异信号分解中的特点,提出了一种基于小波分解的疵点检测新方法.首先根据织物纹理特点,确定小波函数.其次对被检测图像进行小波变换,获得分解后的子图;根据织物纹理组织单元,把高频子图分割成若干子窗口,统计子窗口的能量标准差与均值加权求和作为提取的特征.最后通过测试图像子窗口特征与标准子窗口特征相比较,判断疵点是否存在.实验表明,该检测方法是有效的,检测正确率达到90%以上. According to the characteristics of wavelet decomposition in singular signals, an innovative method for defect detection based on wavelet decomposition is put forward. Firstly, according to fabric texture characteristics, wavelet functions are identified. Secondly, sub -images are acquired through the fabric image wavelet decomposition. High frequency sub - images are segmented into many sub - windows, in which stand deviation and average weighted sum are taken as characteristics. Lastly, the characteristics are compared with normal sub - window's characteristics to determine whether there is a defect. The experimental result confirms that the proposed method is feasible in rapid defect detection, and the detection average accuracy is over 90%.
出处 《昆明理工大学学报(理工版)》 北大核心 2009年第1期48-51,103,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 西安市科技攻关资助项目(项目编号:GG04039)
关键词 小波分解 特征提取 疵点检测 织物 wavelet decomposition characteristic extraction defect detection fabric
  • 相关文献

参考文献5

  • 1SWELDENS W. The Lifting Scheme : a Custom -Design Construction of Biorthogonal Wavelets[ J]. Appl Comput Harmon Anal, 1996,3 (2) :186 -200.
  • 2DAUBECHIES I, SWELDENS W. Factoring Wavelet Transform Into Lifting steps [ J ]. J Fourier Anal App, 1998,4 (3). 247 - 269.
  • 3DU - MIMG TSAI, CHENG - HUEI CHIANG. Automatic Band Selection for Wavelet Reconstruction in the Application of Defect Detection [ J ]. Image and Vision Computing, 2003,21 (5) :413 -431.
  • 4TERTULIEN NDJOUNTCHE, ROLF UUBEHAUEN. Image Restoration: the Avelet -Based Approach [ J ]. International Journal of Pattern Recognition and Articial Intelligence 2003,17 ( 1 ) :151 - 162.
  • 5杨福生.小波变换的工程分析与应用[M].北京:中国科学出版社,2000:32-69.

共引文献1

同被引文献27

  • 1宋寅卯,袁端磊.基于傅里叶变换的帘子布疵点检测研究[J].仪器仪表学报,2006,27(z2):1695-1697. 被引量:4
  • 2卿湘运,段红,魏俊民.基于局部熵的织物疵点检测与识别的研究[J].纺织学报,2004,25(5):57-58. 被引量:32
  • 3袁端磊,路立平,宋寅卯.织物疵点自动检测技术的研究进展[J].郑州轻工业学院学报(自然科学版),2005,20(3):69-73. 被引量:10
  • 4Mahajan P M, Kolhe S R,Patil P M. A Review of Automatic Fabric Defect Detection Techniques[J]. Advances in Compu- tational Research, 2009, 1 (2) : 18-29.
  • 5Mak K L, Peng P,Yiu K F C. Fabric Defect Detection Using Morphological Filters [J]. Image and Vision Computing, 2009, 27(10) :1585-1592.
  • 6Ngan H Y T, Pang G K H, Yung S P,et al. Wavelet Based Methods on Patterned Fabric Defect Detection[J].Pattern Recognition, 2005, 38(4)..559-576.
  • 7Tsai Du Ming, Chiang Cheng-Huei. Automatic Band Selec- tion for Wavelet Reconstruction in the Application of Defect Detection[J]. Image and Vision Computing, 2003,21 (5) 413-431.
  • 8YANG Xuezhi, PANG G, YUNG N. Robust Fabric Defect Detection and Classification Using Multiple Adaptive Wave- lets[J]. IEEE Proceedings on Image Signal Process, 2005, 152(6) ,715-723.
  • 9Cha J, Cofer R H, Kozaitis S P. Extended Hough Trans form for Linear Feature Detection[J]. Pattern Recognition, 2006, 39(6) :1034-1043.
  • 10王学文,邓中民,严平.基于小波分析与纹理能量变换的织物疵点检测[J].棉纺织技术,2007,35(10):9-12. 被引量:13

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部