期刊文献+

一类半线性抛物型方程的非协调有限元法 被引量:1

Nonconforming FEM Methods for a Class of Semi-linear Parabolic Equations
在线阅读 下载PDF
导出
摘要 目的主要研究了一类半线性二阶抛物型方程在半离散下的非协调有限元法,其中,给定的半线性项f(u)满足Lipschitz条件,探索非协调有限元下真解和离散解的误差估计.方法首先,对所讨论的区域进行正则拟一致剖分,并建立非协调有限元空间.其次,建立半离散非协调有限元的格式.结果借助Riesz投影、一些估计式和Gronwall不等式,得到了L2范数下的真解和离散解之间的收敛速度估计.结论这个结果不仅与h有关,而且还与时间有关,这个结果异于协调有限元下的收敛结果. Objective In this paper, a class of semi-linear parabolic equations of second order are studied with the methods of nonconforming FEM, where the given term of the semi-linear satisfying the Lipschite conditions, and the error estimations between the real solution and the semi-discrete solution are researched with the FEM. Methods Firstly, the discussed domain is divided into the regular and the quasiconsistent partitions, and then the noncomforming finite element space is established. Secondly, the semi-discrete schemes of the nonconforming FEM are established. Results With the help of Riesz projection, some estimate formula and the gronwall inequality, the convergence rate between the real solution and the corresponding semi-discrete solution under the norm of L2 is obtained. Conclusion Not only does the result relate to h, but also with the time. The result in this paper is different from that of nonconforming FEM.
出处 《河北北方学院学报(自然科学版)》 2009年第1期1-3,8,共4页 Journal of Hebei North University:Natural Science Edition
关键词 抛物型方程 半线性 半离散 非协调有限元 收敛速度 parabolic equation semi-linear semi-discrete nonconforming FEM convergence rate
  • 相关文献

参考文献8

二级参考文献22

  • 1石东洋,张熠然.非定常Stokes问题的矩形Crouzeix-Raviart型各向异性非协调元变网格方法[J].数学物理学报(A辑),2006,26(5):659-670. 被引量:19
  • 2胡健伟 汤怀民.微分方程数值解法[M].北京:科学出版社,1999..
  • 3[2]姜礼上,庞之絙.有限元方法及理论基础[M].北京:人民教育出版社,1982.
  • 4[3]R D库克.有限元分析的概念和应用[M].北京:科学出版社,1989.
  • 5[4]TYN MYINT U.数学物理中的微分方程[M].上海:上海科学技术出版社,1983.
  • 6[5]GARCIA S M F.Improved error estiation for mixed finite element approximations for nonlinear parabolic equations[J].Numermethods for PDE,1994 (10):130-148.
  • 7[6]IDAR Thomee.Galerkin finite element methods for parabolic problems[M].New York:Cambridge University,2003.
  • 8Ciarlet P G. The finite element methods for elliptic problems[M]. Amsterdam: North-Holland,1978
  • 9Nie Y Y, Thomee V. A lumped mass finite element method with quadrature for a nonlinear parabolic problem[J]. IMAJ Numer Anal,1985;5:371-396
  • 10Thomee V. Galerkin finite element methods for parabolic problems[M]. New York: Springer-Verlag,1984

共引文献9

同被引文献9

  • 1Clément PH,Fleckinger J,Mitidieri E,et al.Existence of positive solutions for quasilinear elliptic systems[J].Differ Equat,2000,166:455-477.
  • 2Bozhkov Y,Mitidieri E.Existence of multiple solutions for quasilinear systems[J].Differ Equat,2003,190:239-267.
  • 3Hernández J.Positive solutions for the logistic equation with unbounded weights[R].Lecture Notes in Pure and Applied Mathematics[C].New York:Dekker,1998:183-197.
  • 4Huang XY.A note on asymptotic behavior of positive solution for some elliptic equations[J].Nonlin Anal Theory Methods Appl,1997 29(05):533-537.
  • 5Kavian O.Introduction à la théorie des points critiques[M].Berlin:Springer,1993:27-96.
  • 6Bechah A,Chaǐb K,Thélin Fde.Existence and uniqueness of positive solutions for subhomogeneous elliptic problems[J].Rev Mat Apl,2001,21(1-2):1-18.
  • 7Drábek P,Kufner A,Nicolosi F.Quasilinear elliptic equations with degenerations and singularities[J].Nonlin Anal Appl,1997,(05):263-278.
  • 8祁瑞改,杨国英.用上下解方法证明p-Laplace方程组正解的存在唯一性[J].杭州师范大学学报(自然科学版),2009,8(4):265-267. 被引量:2
  • 9远方.一类反应扩散方程的锐利条件[J].河北北方学院学报(自然科学版),2008,24(A03):8-9. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部