期刊文献+

White流体重整化群理论的标度性质 被引量:3

Scaling Properties of White's Renormalization Group Theory of Fluid
原文传递
导出
摘要 平均场状态方程结合重整化群理论的方法能预测流体的临界性质以及远离临界点的热力学性质.利用经典的参数型状态方程结合White的重整化过程计算了CO2以及多种正构烷烃(C1~C7)的汽液相平衡热力学性质,并在此基础上讨论了真实流体在临界点附近的非对称性质.计算结果表明,White的流体重整化群理论能够很好地预测流体的相平衡热力学性质,但是对于临界非对称性质不能给出与标度理论相符的结果。 The thermodynamic properties of fluid near to and far from the critical point can be described by the classic mean-field equation-of-state with a correction based on renormalization group theory of fluid developed by White. This work used the parameter equation-of-state with the White's recursion procedure to calculate the global vapor-liquid equilibrium properties of carbon dioxide and n-alkanes. Furthermore, the asymmetric properties of real fluids in critical loci were analyzed to test the validity of White's RG theory in the subcritical region. Though the thermodynamic properties of vapor-liquid equilibrium are well predicted by White's RG theory of fluid, the theory does not reproduce the vapor-liquid asymmetry in fluid criticality derived from the framework of "complete scaling".
作者 吴量 蔡钧
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第4期283-288,共6页 Acta Chimica Sinica
基金 国家自然科学基金(No.20476024) 111计划(No.B08021) PCSIRT资助项目
关键词 重整化群理论 平均场状态方程 汽液相平衡 临界非对称 renormalization group theory mean-field equation of state vapor-liquid equilibrium critical asymmetry
  • 相关文献

参考文献33

  • 1Lee, T. D.; Yang, C. N. Phys. Rev. 1952, 87, 410.
  • 2Sengers, J. V.; Sengers, J. M. Ann. Rev. Phys. Chem. 1986, 37, 189.
  • 3Chen, Z.; Albright, P.; Sengers, J. V. Phys. Rev. A 1990, 41, 3161.
  • 4Anisimov, M.; Gorodetskii, E.; Kulikov, V.; Sengers, J. Phys. Rev. E 1995, 51, 1199.
  • 5Anisimov, M.; Kiselev, S.; Sengers, J. V.; Tang, S. Physica A 1992, 188, 487.
  • 6Fisher, M.; Orkoulas, G. Phys. Rev. Lett. 2000, 85, 696.
  • 7Kim, Y. C.; Fisher, M.; Orkoulas, G. Phys. Rev. E 2003, 67, 061506.
  • 8Yang, C. N.; Yang, C. P. Phys. Rev. Lett. 1964, 13, 303.
  • 9Kim, Y. C.; Fisher, M. Chem. Phys. Lett. 2005, 414, 185.
  • 10Prausnitz, J.; Lichtenthaler, R.; Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice-Hall, Upper Saddle River, New Jersy, 1999.

二级参考文献2

共引文献3

同被引文献34

  • 1陈顒,陈凌.分形几何学[M].北京:地震出版社,2005:59-61.
  • 2朱大勇,范鹏贤,郭志昆,钱七虎.裂隙岩体逾渗模型中渗透概率递推矩阵[J].岩石力学与工程学报,2007,26(2):262-267. 被引量:10
  • 3TURCOTTE D L. 分形与混沌:在地质学和地球物理学中的应用[M]. 陈顒,郑捷,季颖,译. 北京:地震出版社,1993.
  • 4GU P,DENG C,ZHANG D S,et al. Probability of overallcollapse for concrete gravity dam based on renormalizationgroup theory of unequal probability unit[C] / / The 2ndSREE Conference on Hydraulic Engineering ( CHE2013). London: CRC Press,2014:135-140.
  • 5WHITE J A, ZHANG S. Renormalization theory ofnonuniversal thermal properties of fluids [J]. ChemicalPhysics. 1995,103(5): 1922-1928.
  • 6CAI J,PRAUSNITZ J. Thermodynamics for fluid mixturesnear to and far from the vapor-liquid critical point[J].Fluid Phase Equilib,2004,219(2):205-217.
  • 7MI J G,TANG Y P,ZHONG C L,et al. Prediction ofglobal vapor-liquid equilibria for mixtures containing polarand associating components with improved renormalizationgroup theory [J]. Physical Chemistry: Ser B,2005,109(43):20546-20553.
  • 8GU P,DENG C,TANG L. Determination of local damageprobability in concrete structure[C] / /2012 InternationalConference on Modern Hydraulic Engineering. Nanjing:China Association of Hydraulic Engineering Education,2012:489-493.
  • 9刘志峰,赖远庭,赵刚,张有为,刘正锋,王晓宏.随机多孔介质逾渗模型渗透率的临界标度性质[J].物理学报,2008,57(4):2011-2015. 被引量:6
  • 10吴国雄,丁王飞,张洋,李亮.沥青混凝土路面开裂破坏的渗流模型分析[J].重庆交通大学学报(自然科学版),2009,28(6):1016-1020. 被引量:6

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部