期刊文献+

基于变差函数和神经网络的遥感影像分类 被引量:7

The Classification of Remote Sensing Image Based on Vartogram and the Neural Network
在线阅读 下载PDF
导出
摘要 遥感影像有着丰富的纹理信息,对于遥感影像分类精度的提高有着重要的作用。本文利用空间统计学中的变差函数模型来提取遥感影像的纹理信息,通过实例对提取的方法进行了研究,并通过不同变异方向纹理图像的分析比较,阐述了纹理特征提取过程中选取的三个因子、不同计算方向对纹理图像生成结果的影响,实验和分析表明了变差函数法是遥感图像纹理特征提取的一种有效手段。最后将成功提取的纹理信息与光谱信息相结合,运用BP神经网络进行分类和地物识别。实验部分将基于光谱信息的最大似然分类和基于光谱和纹理信息相结合的最大似然分类、基于光谱信息的神经网络分类和基于光谱和纹理信息相结合的神经网络分类四种分类结果进行精度对比分析,结果表明基于光谱和纹理信息相结合的神经网络分类精度最高,验证本论文提出的基于变差函数和神经网络的遥感影像分类方法是可行的。 There is abundant texture information in remote sensing image. The texture information participate in has the vital effect to enhance the remote sensing image classification precision. This study uses the variogram model in spatial statistics to extract textural information of the remote sensing image, studies the extraction method by example, analyses and compares texture image with different variations direction, expatiates the influence of texture image by select the three factors, different calculation direction. The experiment and analysis shows that variogram is an effective means to extract remote sensing image texture characteristics. Finally? adopt the BP neural network method to classify and recognize the matter combining the textural information and spectral information, The experiment part contrasts the four results that maximum likelihood classification based on spectral information, maximum likelihood classifica- tion based on textural information and spectral information, the neural network classification based on spectral information, the neural network classification based on textural and spectral information, The results indicate that the precision of the neural network classification based on textural and spectral information is the best. The results illuminate that the neural network classification based on textural and spectral information is doable.
出处 《遥感信息》 CSCD 2009年第1期60-65,共6页 Remote Sensing Information
关键词 遥感影像分类 光谱信息 纹理信息 变差函数 神经网络 remote sensing image spectral information textural information variogram the neural network
  • 相关文献

参考文献9

二级参考文献38

  • 1梁怡.人工智能、空间分析与空间决策[J].地理学报,1997,52(S1):104-113. 被引量:11
  • 2胡希军,吕惠进.TM图像多层神经网络自动识别分类[J].遥感技术与应用,1995,10(2):49-54. 被引量:3
  • 3孙家柄 舒宁 等.遥感原理、方法和应用[M].测绘出版社,1997..
  • 4王耀南.智能控制系统--模糊控制·专家系统·神经网络控制[M].长沙:湖南大学出版社,1996..
  • 5Miranda F P, Carr J P. Application of the sanivariogram textural classifier (SIC) for vegetation discrimination using SIR- B data of the Guiana Shield, northwestern Brazil [J ]. Remote Sensing Reviews, 1994, 10: 155-168.
  • 6Chica - Olmo M, Arbarca - Hernandez F. Carnputing geostatistical image texture for remotely sensed data classification [J ]. Computers & Geosciences, 2000, 26(4) :373 - 383.
  • 7Berbercglu S, Lloyd C D, Atkinson P M, et al. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean [ J ]. Computers & Geosciences, 2000, 26 (4): 385- 396.
  • 8Carr J R, Miranda F P. The sanivariogram in comparison to the co- occurrence matrix for classification of image texture [ J ].IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6) : 1945 - 1952.
  • 9Lark R M. Geostatistieal description of texture on an aerial photograph for discriminating classes of land cover [J]. Remote Sensing, 1996, 17(11): 2115-2133.
  • 10Woodock C E, Harward V J. Nested-hierarchical scene models and image segmentation [J]. Remote Sensing, 1992, 13:3167-3187.

共引文献89

同被引文献103

引证文献7

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部