摘要
提出了一种新的基于支持向量回归(SVR)的情感语音的变换方法.通过提取普通话10种情感语音的韵律特征,对比分析了中性语音和情感语音之间的韵律特征差异,利用SVR建立了基频、时长、能量、停顿等韵律特征参数的预测模型,并利用Straight算法实现了由中性语音向情感语音的转换.利用这种方法变换出的10种情感语音,其情感主观平均(EMOS)得分为3.4.
This paper proposed a novel approach for emotional speech conversion based on support vector regression(SVR). By analyzing the prosodic features of contrastive neutral and emotional recordings, a support vector regression(SVR) based model is developed, which can transform acoustic features of neutral speech(pitch, duration, energy and pauses) to resemble emotional speech with Straigth algorithm. Emotional mean opinion score(EMOS) results demonstrate that the modified speech which achieved 3.4 of score can express emotion.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2009年第1期62-66,93,共6页
Journal of Northwest Normal University(Natural Science)
基金
教育部科学研究重点项目(208146)
西北师范大学科研骨干培育项目(NWNU-KJCXGC-03-42)