期刊文献+

浸渗时间对C/C-SiC复合材料显微结构和力学性能的影响 被引量:10

Effect of infiltration time on microstructure and mechanical properties of C/C-SiC composites
在线阅读 下载PDF
导出
摘要 采用反应熔体浸渗法,经不同的浸渗时间渗Si制备了3种不同的C/C—SiC复合材料,测试了材料的增重率、体积密度、断裂韧性及三点弯曲强度,分析了材料的物相组成,并观察了材料的显微结构。结果表明,在得到的C/C—SiC复合材料中,主要存在纳米级和微米级2种尺度的SiC颗粒,随着浸渗时间延长,材料的体积密度和SiC含量随之增加,但抗弯强度随之降低。浸渗时间从0.5h延长到5h,材料的密度从2.16g·cm^-3增加到2.21g·cm^-3,SiC的质量百分含量从21.54%增加到31.72%,三点弯曲强度从133MPa下降到86MPa,3种复合材料均表现出一种类似于金属材料的非脆性断裂行为,断裂应变约为1.3%,断裂韧性为9-10MPa·m^1/2。 By using reactive melt infiltration process, three kinds of C/C-SiC composites were prepared in different infiltration time. Weight gain rate, bulk density, fracture toughness and three-point flexural strength of the C/C-SiC composites were respectively tested, phase composition of the composites analyzed, and microstructure of the composites observed. The results show that there exist mainly two kinds of SiC particles in the C/C-SiC composites,i, e. nano-scale SiC particles and micro-scale SiC particles;with the increase of infiltration time, both volume density and mass fraction of SiC increase, but flexural strength decreases. When infiltration time is extended from 0.5 h to 5 h ,density can increase from 2.16 g.cm^-3 to 2.21 g.cm^-3 ,and mass fraction of SiC increases from 21.54% to 31.72% ,but flexural strength decreases from 133 MPa to 86 MPa. All the composites behave like non-brittle fracture similar to metal material with the fracture strain about 1.3% and fracture toughness within 9 - 10 MPa . m^1/2
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2009年第1期103-108,共6页 Journal of Solid Rocket Technology
基金 国家自然科学基金项目(50672076) 长江学者创新团队项目
关键词 浸渗时间 C/C-SIC复合材料 显微结构 力学性能 infiltration time C/C-SiC composites microstructure mechanical property
  • 相关文献

参考文献21

  • 1Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[ J ]. Compes. Sci. Technol. ,2004,64 : 155-170.
  • 2傅恒志.未来航空发动机材料面临的挑战与发展趋向[J].航空材料学报,1998,18(4):52-61. 被引量:132
  • 3Spriet P, Habarou G. Applications of CMCs to turbojet engines :overview of the SEP experience[ J ]. Key Eng. Mater. , 1997,127-131 : 1267-76.
  • 4Voorde M H, Nedel M R. CMCs research in Europe and the future potential of CMCs in industry [ J ]. Ceram. Eng. Sci. Proc. ,1996,(3) :3-21.
  • 5Naslain R. SiC-matrix composites: non-brittle ceramics for thermo-structural application[J]. Int. J. Appl. Ceram. Technol. ,2005,2 (2) :75-84.
  • 6Curry D M, Kowal J, Sawyer J W. Application of carbon-carbon and silicon carbide composites to reusable launch vehicles [ R ]. AIAA Space Transportation Symposium, 2002 : 11- 12.
  • 7刘文川.热结构复合材料的制备及应用[J].材料导报,1994,8(2):62-66. 被引量:12
  • 8Krenkel W, Heidenreich B, Renz R. C/C-SiC composites for advanced friction systems [ J ]. Adv. Eng. Mater. , 2002,4 (7) :427-436.
  • 9Vaidyaraman S,Purdy M,Walker T,Horst S. C/SiC material evaluation for aircraft brake applications[ C ]//4th International Conference on High Temperature Ceramic Matrix Composites ( HT-CMCA ) Proceedings. Germany: Wiley-VCH,2001 : 802 - 808.
  • 10Fan S, Zhang L, Xu Y, et al. Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials [ J]. Compos. Sci. Technol. ,2007,67:2390-2398.

二级参考文献50

共引文献196

同被引文献193

引证文献10

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部