期刊文献+

格值命题逻辑系统中基于滤子的MP归结演绎 被引量:8

MP Resolution Inference Based on Filter of Lattice-valued Proposition Logic System
在线阅读 下载PDF
导出
摘要 给出了格值命题逻辑系统中子句的极简规则型范式,定义了M P归结。结合格蕴涵代数中滤子的性质,对格值命题逻辑系统中基于滤子的M P归结演绎及其语义与语法性质进行了研究,证明了归结演绎的可靠性与完备性定理。为进一步研究格值逻辑的自动归结推理奠定了理论基础。 In this paper, first, the extra simple ruled normal form of clause of lattice-valued propositional logic system LP(X) and the definition of MP resolution are given. Then resolution inference and its semantic and syntactic properties based on filter are discussed. Finally, the soundness theorem and completeness theorem are proved. The results in this paper may be useful for the application of intelligent reasoning system based on lattice-valued logic.
出处 《模糊系统与数学》 CSCD 北大核心 2009年第1期1-5,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(60474022) 西南交通大学基金资助项目(2006B09)
关键词 格蕴涵代数 格值命题逻辑 归结 滤子 Lattice Implication Algebra Lattice-valued Proposition Logic System Resolution Filter
  • 相关文献

参考文献8

  • 1徐扬.格蕴涵代数[J].西南交通大学学报,1993,28(1):20-27. 被引量:319
  • 2Qin K Y. Lattice-valued propositional logic(Ⅰ)[J]. Journal of Southwest Jiaotong University, 1993,2:123-128.
  • 3Qin Keyun,Xu Yang( Dept. of Appl. Mathematics, Southwest Jiaotong University)Chengdu 610031,China.Lattice-Valued Proposition Logic(Ⅱ)[J].Journal of Modern Transportation,1994,11(1):22-27. 被引量:13
  • 4Xu Y,Liu J,Song Z M,Qin K Y. On semantics of L-valued first-order logic Lvn[J]. International Journal of General Systems, 2000,29(1) :53-79.
  • 5Xu Y, Ruan D, Kerre E E, Liu J. a-resolution principle based on lattice-valued propositional logic LP(Ⅹ)[J]. Int. J. Information Sciences, 2000,130 : 195 - 223.
  • 6Xu Y, Ruan D, Kerre E E, Liu J. a-resolution principle based on first-order lattice-valued logic LF(Ⅹ)[J]. Int. J. Information Sciences, 2001,132 : 221- 239.
  • 7王伟,徐扬,宋振明.The Logical Properties of Filters of Lattice Implication Algebra[J].Chinese Quarterly Journal of Mathematics,2001,16(3):8-13. 被引量:3
  • 8Ma J. Uncertainty reasoning on filter of lattice implication algebra[A]. Proceedings of the second International Conference on Machine Learning and Cybernetics[C]. Xi'an,2003 : 2-5.

二级参考文献12

  • 1Young Baejun,Bull Korean Math Soc,1998年,35卷,1期,13页
  • 2Qin Keyun,模糊系统与数学,1998年,12卷,1期,10页
  • 3Liu Jun,Chin Sci Bull,1997年,42卷,18期,1517页
  • 4Liu Jun,兰州大学学报,1996年,32卷,344页
  • 5Liu Jun,数学季刊,1996年,11卷,4期,106页
  • 6Qin Keyun,Proceedings of the Fifth International Fuzzy Systems Association World Congress 7,1993年,410页
  • 7Yang X U,The J Fuzzy Mathematics,1993年,1卷,2期,251页
  • 8Qin Keyun,模糊系统与数学,1993年,7卷,2期,17页
  • 9Qin Keyun,数学季刊,1993年,8卷,4期,53页
  • 10Yang X U,西南交通大学学报,1993年,89卷,1期,20页

共引文献320

同被引文献80

  • 1秦克云,涂文彪.粗糙集代数与格蕴涵代数[J].西南交通大学学报,2004,39(6):754-757. 被引量:16
  • 2张家锋,顾秀梅,秦克云.粗糙集代数与R_0-代数[J].四川理工学院学报(自然科学版),2006,19(5):95-98. 被引量:3
  • 3秦克云 徐扬.格值命题逻辑(Ⅱ).西南交通大学学报,1994,(2):22-27.
  • 4Robinson J P. A machine- oriented logic based on the resolution principle[ J]. J ACM, 1965,12:23 -41.
  • 5Slagle J R. Automatic theorem proving with renamable and semantic resolution[ J]. J ACM, 1967,14(4) :687 - 697.
  • 6Loveland D W. A linear fomlat for resolution [ C ]//Proc IRIA Syrup Automatic Demonstration. New York:Spring -Verlag, 1970: 147 - 162.
  • 7Xu Y, Ruan D, Kerre E E, et al.α -Resolution principle based on lattice -valued propositional logic LP(X) [J]. Information Sciences ,2000,130 : 195 - 222.
  • 8Xu Y, Ruan D, Kerre E E, et al. α- Resolution principle based on first - order lattice - valued Iogic LF(X) [J]. Information Sciences ,2001,132:221 - 239.
  • 9王伟.格值命题逻辑系统LP(X)中基于α-归结原理的自动推理方法研究[D].成都:西南交通大学,2002.
  • 10李晓冰.基于语言真值格值逻辑的归结自动推理研究[D].成都:西南交通大学,2008.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部