期刊文献+

自适应路由蚁群算法在导弹残骸搜索中的应用 被引量:2

Application of Ant Colony Algorithm in Missile Wreckage Searching Based on Adaptive Dynamic Routing
在线阅读 下载PDF
导出
摘要 防空导弹飞行试验后弹目残骸有着重要价值。根据残骸搜索的实际需求,把残骸落点纳入到路网中,结合自适应路由算法,改进了基本蚁群算法,解决了靶场残骸搜索的最优路径问题。蚁群算法有收敛性较差、易于过早陷入局部最优等不足,通过构建蚁群、引入信息素约束条件、调整信息素初始值、自适应改变信息素增量等技术,增强了蚁群搜索能力,改善了算法收敛速度。仿真表明该算法易于编程实现,时延小,鲁棒性强,实用性好。 Wreckage of antiaircraft missile and target after flying test has an important value. According to the re- quirement of wreckage searching, a new method is proposed and applied to find the optimal path joining falling point in path net in this paper. It can improve the classical ant colony optimization algorithm(ACO) by combining adaptive dynamic routing algorithm. ACO has worse performance in convergence and is easy to fall into the local maximum. The method enhances ACO convergence and searching ability by constructing ant colony, importing pheromone restriction, adjusting pheromone initial value, adaptive updating pheromone value. Simulation results show that the method has excellence in programming realization, time delay, robustness and practicability.
出处 《计算机仿真》 CSCD 北大核心 2009年第3期55-57,共3页 Computer Simulation
关键词 蚁群算法 自适应动态路由算法 最优路径 信息素 Ant colony algorithm Adaptive dynamic routing algorithm Optimal path Pheromone
  • 相关文献

参考文献8

二级参考文献20

  • 1金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 2M Dorigo, V Maniezzo and A Colorni. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1): 29-41,1996.
  • 3M Dorigo, G Di Caro, and L M Gambardella. Ant algorithms for discrete optimization[J]. Artificial Life, 5(2):137-172, 1999.
  • 4Clarkson K L, Kapoor S. Rectilinear Shortest Path Through Plygonal Obstacles in O(n(logn)2) Time[J].IEEE Transaction on Computational Geometry,1987,12(3): 183-192
  • 5Zheng S Q, Lim J S, Iyengar S S. Finding Obstacle-avoiding Shortest Paths Using Implicit Connection Graphs[J].IEEE Transaction on Computer-aided Design of Integrated Circuits and Systems, 1996 ,15(1):103-110
  • 6Wu F, Widmayer P. Rectilinear Shortest Path with Rectangular Barriers[J].IEEE Transaction on Computers,2000, 12(1): 152-158
  • 7Colorini A , Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies.1st European Conf. Artificial Life, Pans., Elsevier, France, 1991
  • 8Colorini A, Dorigo M, Maniezzo V. 1991 Positive Feedback as a Search Strategy. Technical Report 91-016, Politecnico di Milano,1991
  • 9DI CARO G, DORIGO M. AntNet: A mobile agents approach to adaptive routing [R]. Belgium:Université Libre de Bruxelles, 1997.
  • 10DI CARO G, DORIGO M. Antnet: Distributed stigmergic control for communications networks [J]. Journal of Artificial Intelligence Research, 1998, 9: 317-365.

共引文献181

同被引文献12

  • 1李可达.现代空袭作战模式研究[J].航天电子对抗,2010,26(6):56-60. 被引量:15
  • 2李红涛,武文军,舒磊.要地防空作战中空中目标威胁度估计的数学模型[J].指挥控制与仿真,2006,28(6):35-37. 被引量:2
  • 3段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 4Dorigo M,Gambardella L M.Ant Colonies for the Traveling Salesman Problem[J].BioSystems,1997 (43):73-81.
  • 5Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[A].Proceedings of the 1st European Conference on Artificial Life[C].1991:134-142.
  • 6[美]陆军装备部.终点弹道学原理[M].王维和,李惠昌,译.北京:国防工业出版社,1988:246-251.
  • 7娄寿春.导弹制导技术[M].北京:宇航出版社,1989.
  • 8林伟初.概率论与数理统计[M].上海:同济大学出版社,2008.
  • 9张志鸿,周申生.防空导弹系列-防空导弹引信与战斗部配合效率和战斗部设计[M].北京:宇航出版社,1996.
  • 10李士勇,赵宝江.一种蚁群聚类算法[J].计算机测量与控制,2007,15(11):1590-1592. 被引量:6

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部