期刊文献+

基于多小波包的齿轮故障诊断方法研究 被引量:1

Research of Fault Diagnosis of Gears Based on Multiwavelet Packets
在线阅读 下载PDF
导出
摘要 提出了一种全新的基于多小波包的齿轮箱故障诊断方法。在机械故障诊断领域,小波分析已经被应用在利用齿轮振动信号进行的故障诊断中。由于小波函数空间在高尺度上频带较宽,因此隐藏在信号中的在较高频段发生的窄带故障信号的频率成分不能被精确地诊断。提出的多小波变换,通过划分小波变换不同层的频带克服了单小波(标量小波)系统的这种缺陷。通过多小波包变换,可以自动并精确地划分不同小波包结点的频率段,从而对频率段较窄的瞬变故障信号进行精确的诊断。对齿轮箱的仿真实验结果表明,应用多小波包系统,不但可以对齿轮系统中包含瞬变现象的故障信号进行诊断,而且可以精确确定齿轮中坏齿的位置。 A new diagnosis method for the fault of gearboxes based on multiwavelet packets system is introduced. In the field of mechanical fault diagnosis, wavelet analysis is used in gear diagnosis. The wavelet function spaces at higher scales are broadband, so that the frequency content of the narrow-band phenomena hidden in the signal occured at relatively high frequencies cannot be diagnosed precisely. This deficiency of the scalar wavelet systems can be overcome by dividing the frequecncy bands of different levels. Using the multiwavelet packets transform, one attains this achievement automatically and more precisely. The simulation results show that using multiwavelet packets system, not only can the fault containing transient phenomena in the gearing system be diagnoses, but also its location can be determined precisely.
出处 《控制工程》 CSCD 2004年第S2期185-188,共4页 Control Engineering of China
基金 国家"九五"重点科技攻关项目(96-A05-04-01)
关键词 多小波 齿轮箱 多小波包 尺度函数 multiwavlets gearbox multiwavelet packets scaling function
  • 相关文献

参考文献6

  • 1黄明辉,李子萌.小波神经网络在齿轮箱故障诊断中的应用[J].中南工业大学学报,1998,29(5):490-493. 被引量:10
  • 2Gary G. Yen.Health monitoring of vibration signatures in rotorcraft wings[J]. Neural Processing Letters . 1996 (3)
  • 3Yen G G.Health monitoring of vibration signatures in rotocraft wings. Neural Processing Letters . 1996
  • 4Donovan G C,Geronimo J S,Hardin D P,et al.Construction of orthogonal wavelets using fractal interpolation functions. SIAM Journal of Mathematical Analysis . 1996
  • 5Neland D E.Ridge and phase identification in the frequency anaysis of transient signals by harmonic wavelets. Journal of Vibration and Acoustics . 1999
  • 6Liu B,et al.Machinery diagnosis based on wavelet packets. J Vibration Contr . 1997

二级参考文献3

  • 1张邦礼,重庆大学学报,1995年,18卷,6期,780页
  • 2Shi Z,IJCNN,1992年,3卷,1期,125页
  • 3焦李成,神经网络系统理论,1990年

共引文献9

同被引文献4

  • 1Qinghua Hu,Daren Yu,Jinfu Liu,Congxin Wu.Neighborhood rough set based heterogeneous feature subset selection[J].Information Sciences.2008(18)
  • 2Qinghua Hu,Jinfu Liu,Daren Yu.Mixed feature selection based on granulation and approximation[J].Knowledge-Based Systems.2007(4)
  • 3Zdzis?aw Pawlak.Rough sets[J].International Journal of Computer & Information Sciences.1982(5)
  • 4李东敏,刘志刚,苏玉香,蔡军.基于多小波包和人工神经网络的电力系统故障类型识别[J].电力自动化设备,2009,29(1):99-103. 被引量:22

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部