期刊文献+

一种改进的R-L分数阶导数定义在固体推进剂粘弹性本构模型中的应用 被引量:2

Modified Riemann-Liouville Fractional Order Derivative Definition in Solid Propellant Viscoelasticity Constitutive Model
在线阅读 下载PDF
导出
摘要 针对Riemann-Liouville分数阶导数定义的不足之处进行了改进,利用改进过的分数阶导数定义,建立了类Kelvin体粘弹性本构模型,并应用于某固体推进剂上,对本构方程中的三个参数进行了求解,与经典的prony级数模型进行比较,采用分数阶导数的类Kelvin体粘弹性本构模型与实验结果能很好地吻合。 Aiming at the inherent shortages,Riemann-Liouville Fractional order derivative definition is modified.A Quasi Kelvin viscoelasticity Constitutive model is established by the modified definition.The model has been employed in some solid propellant,and the parameter in the model is solved.Comparing with the Prony series model,this proposed model coincides with the experiment result.
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第1期168-171,共4页 Chinese Journal of Applied Mechanics
关键词 分数阶导数 类Kelvin模型 本构方程 fractional order derivative,quasi Kelvin model,constitutive equation
  • 相关文献

参考文献6

  • 1Nutting P G. A new generalized law deformation [J]. Franklin Institue, 1921,191:675-685.
  • 2Gemant A. On fractional differences[J]. Phil Mag, 1938, 25:92-96.
  • 3Rabotonr Yu N, Papernik Lkh, Zvonov E N. Tables of Fractional Function of Negative Parameters and its integral [J]. Moscow, Nauka, 1969.
  • 4Bagley R L. Power law and fractional calculus model of viscoelasticity[J]. AIAA, 1989, 27(10) :1412-1417.
  • 5林孔容.关于分数阶导数的几种不同定义的分析与比较[J].闽江学院学报,2003,24(5):3-6. 被引量:18
  • 6Bagley R L, Torvik P J. On the Fractional Calculus Model of Viscoelastic Behavior[J]. Rheology, 1986,30(1) : 133-155.

二级参考文献1

共引文献17

同被引文献32

  • 1胡梦佳,李书,王远达.主动约束层阻尼板结构动力学建模[J].振动.测试与诊断,2013,33(S1):198-201. 被引量:5
  • 2Song Yong, Sun Dagang, Zhang Xin, et al. An analytical solution to steady-state temperature distribution of N-layer viscoelastic suspensions used in crawler vehicles[J]. International Journal of Heavy Vehicle Systems, 2012,19(3): 281-298.
  • 3Yan Bijuan, Sun Dagang, Song Yong. Stress- deformation-temperature behavior of a rolling segmented constrained layer damped bogie wheel[J]. Noise Control Engineering, 2012, 60(6): 655-664.
  • 4Geethamma V G, Asaletha R, Kalarikkal N, et al. Vibration and sound damping in polymers[J]. Resonance, 2014, 19(9): 821-833.
  • 5Gattulli V, Potenza F, Lepidi M. Damping performance of two simple oscillators coupled by a viscoelastic connection[J]. Journal of Sound and Vibration, 2013, 332(26): 6934-6948.
  • 6Lei Y, Adhikari S, Friswell M I. Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams[J]. International Journal of Engineering Science, 2013, 66(5): 1-13.
  • 7Chindam C, Venkata K C, Balasubramaniam K, et al. Thermomechanical response of metals: Maxwell vs. Kelvin-Voigt models[J]. Materials Science and Engineering, 2013, 560(2): 54-61.
  • 8Dall\'Asta A, Ragni L. Nonlinear behavior of dynamic systems with high damping rubber devices[J]. Engineering Structures, 2008, 30(12): 3610-3618.
  • 9Schmidt A, Gaul L. On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems[J]. Mechanics Research Communications, 2006, 33(1): 99-107.
  • 10Zopf C, Hoque S E, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98(1): 287-296.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部