摘要
本文研究了d-维格子点上随机环境中随机游动模型.利用鞅方法及Derriennic和Lin所发展的分数上边缘理论,在粒子的Quenched均值的方差具有次扩散界的条件下,证明了该模型的Strassen强不变原理.
We consider random walk in random environment on Zd (d ≥ 1) and prove the Strassen' s strong invariance principle for this model, via martingale argument and the theory of fractional coboundaries of Derriennic and Lin, under some conditions which require the variance of the quenched mean has a subdiffusive bound.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第3期483-494,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10771185)