期刊文献+

相干态表象在量子相空间分布函数中的应用 被引量:4

The Applications of Coherent State Representation on the Distribution Functions of the Quantum Phase Space
在线阅读 下载PDF
导出
摘要 利用相干态表象和IWOP技术导出了自由热态密度矩阵的正规乘积形式,进而根据相干态表象下的Wigner函数定义重构了自由热态和热相干态的Wigner函数。结果表明利用相干态表象下的Wigner函数定义和算符的正规乘积形式可以方便简捷重构一些量子态的Wigner函数。 By means of the coherent state representation and the IWOP technique, the density matrix of free thermal state can be written as normal product form. And then the Wigner function of free thermal state and the thermal coherent state are reproduced by using the wigner function in coherent state representation. It is found that it is easy to obtain the Wigner function of some quantum states by using the Wigner function defined in terms of the coherent state and the normal product form of operators.
作者 王帅
机构地区 菏泽学院物理系
出处 《量子光学学报》 CSCD 北大核心 2009年第2期101-105,共5页 Journal of Quantum Optics
基金 菏泽学院自然科学基金资助项目(XY07WL01)
关键词 量子光学 WIGNER分布函数 IWOP技术 正规乘积 密度矩阵 quantum optics Wigner function IWOP technique normal product form density matrix
  • 相关文献

参考文献4

二级参考文献23

  • 1杨庆怡,孙敬文,韦联福,丁良恩.增、减光子奇偶相干态的Wigner函数[J].物理学报,2005,54(6):2704-2709. 被引量:13
  • 2Chen B et al 1995 Phys. Lett. A 205 121
  • 3Li Y Q and Chen B 1996 Phys. Rev. B 53 4027
  • 4Wang J S et al 2000 Int. J. Theor. Phys. 39 2013
  • 5Fan H Y et al 2000 Chin. Phys. Lett. 17 174
  • 6Lei M S et al 2001 Chin. Phys. Lett. 18 163
  • 7Fan H Y et al 2002 Phys. Lett. A 16 472
  • 8Liang M L and Yuan B 2002 Commun. Theor. Phys. 37519
  • 9Wang Z Q 2002 Acta Phys. Sin. 51 1808
  • 10Zhang S et al 2002 Phys. Lett. A 29 1804

共引文献57

同被引文献20

  • 1FAN HongYi1,YUAN HongChun1 & JIANG NianQuan2 1Department of Physics,Shanghai Jiao Tong University,Shanghai 200030,China,2College of Physics and Electric Information,Wenzhou University,Wenzhou 325035,China.Deriving new operator identities by alternately using normally,antinormally,and Weyl ordered integration technique[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1626-1630. 被引量:14
  • 2邓阿丽,夏云杰.利用分束器产生的一类非经典光场[J].量子光学学报,2004,10(B09):39-39. 被引量:4
  • 3FAN Hong-Yi LIU Shu-Guang.Wigner Distribution Function and Husimi Function of a Kind of Squeezed Coherent State[J].Communications in Theoretical Physics,2007,47(3):427-430. 被引量:3
  • 4SEE E G, WALLS D F, MILBURN G J. Quantum Optics [M]. Berlin: Springer-Verlag, 1994.
  • 5DIRAC P A M. The Principles of Quantum Mechanics [M]. Oxford: Clarendon Press, 1930.
  • 6FAN Hong-yi. Operator Ordering in Quantum Optics Theory and the Development of Dirac's Sym-bolic Method [J]. J OptBOpt, 2003, 5: R147-164.
  • 7FAN H Y, LU H L, FAN Y. Newton-Leibniz Integration for Ket-bra Operators in Quantum Mechanics and Derivation of Entangled State Representations [J]. Ann Phys, 2006, 321 : 480-494.
  • 8FAN Hong-yi, ZOU Hui, FAN Yue. A Complete and Orthonormal Representation in Two-mode Fock Space Gained by Two-variable Hermite Polynomials [J]. J Mod Phys A, 2001, 16: 369-375.
  • 9FAN Hong-yi. Squeeze Operator and the Single-complex-variable Representation in Two-mode Fock Space [J]. Phys LettA, 1987, 126: 145-149.
  • 10FAN Hong-yi, KLAUDER J R. Eigenvectors of two Particles' Relative Position and Total Momentum [J]. Phys Rev A, 1994, 49: 704-707.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部