期刊文献+

树的孤立点

The isolated vertices of trees
在线阅读 下载PDF
导出
摘要 设G=(V,E)为连通图,L为它的Laplace矩阵,Y为L的对应于特征值λ的特征向量.相对于向量Y,顶点u∈V称为是G的孤立点,如果Y[u]=0,并且对任意与u相邻的顶点v,均有Y[v]=0.论文证明:对于树T,如果mL[T-v](λ)=mL(λ),则对λ的任意特征向量Y,v都是孤立点. Let G = (V,E) was a connected graph on n vertices, L was its Laplacian matrix, and Ywas an eigenvector of L corresponding to the eigenvalue A . Respecting to the vector Y, a vertex u ∈ V was called an isolated vertex of G, if Y[ u ] = 0 , and for an arbitrary vertex v adjacent to u, Y[v] = 0. In the paper, we proved that each vertex v satisfied mL[ T-v] ( λ ) = mL ( λ ), which was an isolate vertex of T respected to any eigenveetor corresponding to λ.
作者 李亮 龚世才
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第3期20-22,共3页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(10601001)
关键词 LAPLACE矩阵 孤立点 特征向量 tree Laplacian matrix isolated vertex eigenveetor
  • 相关文献

参考文献9

  • 1Fiedler M. Algebraic connectivity of graphs [ J ]. Czechoslovak Math J, 1973,23 ( 3 ) :298 - 305.
  • 2Fiedler M. Eigenvectors of acyclic matrices [ J ]. Czechoslovak Math J, 1975,25 (4) :607 - 618.
  • 3Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory [J].Czechoslovak Math J, 1975,25 (4) : 619 - 633.
  • 4Bapat R B, Pati S. Algebraic connectivity and the characteristic set of a graph [ J ]. Linear and Muhilinear Algebra, 1998,45 ( 2 ) :247 - 273.
  • 5Merris R. Characteristic vertices of trees [ J ]. Linear and Muhilinear Algebra, 1987,22 ( 3 ) : 115 - 131.
  • 6Merris R. Laplacian matrices of graphs: a survey[J]. Linear Algebra Appl,1994,198( 1 ) :143 -176.
  • 7Pati S. The third smallest eigenvalue of the Laplacian matrix [J].Electronic Journal of Linear Algebra,2001,8:128 - 139.
  • 8Fan Y Z, Gong S C, Wang Y. On trees with exactly one characteristic element[ J]. Linear Algebra Appl,2007,421 (2) :233 -242.
  • 9Horn R A, Johnson C R. Matrix analysis[ M ]. Cambridge : Cambridge University Press, 1985:259 - 260.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部