期刊文献+

基于多尺度逼近的多维传感信息解耦方法 被引量:5

Approach to Decoupling of Multi-Di mension Sensing Information Based on Multi-Scale Approxi mation
在线阅读 下载PDF
导出
摘要 针对多尺度插值解耦方法的尺度特征计算和尺度阈值优化求解问题,提出了一种基于多尺度逼近的多维传感信息解耦方法.该方法通过函数多尺度逼近快速获取尺度特征,无需构建传感器的特征方程,根据尺度取值顺序确定尺度阈值和相应的插值方法,从而实现准确度目标下的快速解耦.仿真结果表明,尺度特征计算方法简单直接,当解耦的准确度目标为0.5%时,计算得到的尺度阈值为2-4,此时的最短解耦计算时间为80ms,解耦误差约为0.457 5%. This paper deals with the scale feature calculation and the scale threshold optimization of multi-scale interpolation decoupling. A new approach to the decoupling of multi-dimension sensing information based on multiscale approximation is proposed. The multi-scale approximation of functions is used to rapidly acquire scale features without constructing any sensor eigenfunction, and the scale threshold and the corresponding interpolation methods are determined according to the scale order of sensing information, thus implementing a precise and rapid decoupling. Simulated results show that the proposed calculation method of scale features is simple and direct, and that, when the decoupling precision is set as 0. 5% , the calculated scale threshold reaches 2^-4, and the shortest deeoupling time for the threshold is 80ms, with a decoupling error of approximately 0. 4575%.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期86-89,110,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省教育部产学研结合项目(2007A090302039) 广州市科技计划项目(2005Z3-D0341)
关键词 传感器 插值 解耦 多尺度逼近 尺度阈值 sensor interpolation decoupling multi-scale approximation scale threshold
  • 相关文献

参考文献4

二级参考文献25

  • 1宋国民,张为公,翟羽健.基于对角优势化补偿的传感器动态解耦研究[J].仪器仪表学报,2001,22(z1):165-167. 被引量:13
  • 2苑立波,吕惠志.二维光纤位置传感原理[J].光子学报,1995,24(2):184-189. 被引量:3
  • 3张为公.汽车道路试验用车轮扭矩传感器设计[J].东南大学学报,1999,(11).
  • 4[2]LIU G X,KUANG Y C,ZHENG SH X.Study on the method to adjust the measuring attitude and signal processing for optical fiber distance and orientation integrated proximity sensor[J].SPIE,2001,4414:254-257.
  • 5[4]LIU G X,KUANG Y C,SHEN B H.Study on robust quad-eye optical fiber proximity sensing technology for robot[J].SPIE,2002,4902:458-462.
  • 6[5]WANGA H Y,HEA G W,XIA M F,et al.Multiscale coupling in complex mechanical systems[J].Chemical Engineering Science,2004,59:1677-1686.
  • 7[6]XU H X,MIKAEL K.Modeling the optical response of nanoparticle-based surface plasmon resonance sensors[J].Sensors and Actuators,2002,87(2):244-249.
  • 8[7]VIBET C.Floating the data acquisition chains to improve the quality of measurements[J].ISA Transactions,2000,39(3):287-291.
  • 9[9]KRIM H,WILLINGER W,JUDITSKI A,et al.Introduction to the special issue on multiscale statistical signal analysis and its application[J].IEEE Trans.on Information Theory,1999,45(3):825-827.
  • 10[10]GONIDEC L,CONIL F,GIBERT D.The wavelet response as a multiscale NDT method[J].Ultrasonics,2003,41(6):487-497.

共引文献22

同被引文献55

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部