期刊文献+

PRNN对Bacillus cereus DM423分批培养过程中生物量的软测量 被引量:1

PRNN-Based Soft-Sensing of Bacillus cereus DM423 Biomass During Batch Cultivation
在线阅读 下载PDF
导出
摘要 为利用神经网络的非线性处理能力准确反映微生物培养的动态过程,应用部分反馈神经网络(PRNN)对分批培养过程中的Bacillus cereus DM423的生物量进行软测量,构建了拓扑结构为11-5-1的部分反馈神经网络.网络的输入量为pH、温度、溶氧量和葡萄糖浓度的延时量,同时将网络输出的生物量浓度进行延时、反馈作为网络输入量,输出量为生物量浓度当时值,算法为BPTT法,获得的网络泛化能力较好,训练样本的均方差为0.56×10-3.此外,所建立的部分反馈神经网络具有良好鲁棒性,可抵抗小幅度的高斯噪声干扰.对Bacillus cereus DM423分批培养过程进行多步预测,预测精度高. Neural networks with nonlinearity correctly describe the dynamic process of microorganism cultivation. In this paper, the biomass of Bacillus cereus DM423 during a batch cultivation was measured by a soft-sensor based on the partial recurrent neural network (PRNN) , and a PRNN with the topology of 11-5-1 was constructed, in which the pH value, the temperature, the dissolved oxygen content, the glucose concentration at two previous times, as well as the delays and feedbacks of estimated biomass concentration at three previous times, were used as the input variables, the current biomass concentration was used as the output variable, and the BPTT algorithm was employed. The results show that the constructed network is of good generalization and that a mean square error of 0. 56× 10^-3 is attained. It is also found that the the constructed network is robust in resisting low Gaussian noise, and is suitable for the accurate multi-step prediction of biomass of Bacillus cereus DM423 during a batch cultivation.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期111-115,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金重点资助项目(20436020)
关键词 反馈神经网络 生物量 软测量 预测 recurrent neural network biomass soft-sensing prediction
  • 相关文献

参考文献15

  • 1Dacosta P,Kordich C,Williams D,et al.Estimation of inaccessible fermentation states with variable inoculum sizes[J].Artificial Intelligence in Engineering,1997,11(4):383-392.
  • 2Massimo C D,Montague G A,Willis M J,et al.Towards improved penicillin fermentation via artificial neural networks[J].Computers Chemical Engineering,1992,16(4):283-291.
  • 3Desai K M,Vaidya B K,Singhal R S,et al.Use of an artificial neural network in modeling yeast biomass and yield of b-glucan[J].Process Biochemistry,2005,40(5):1617-1626.
  • 4许哲军,何云,郭美锦,储炬,张嗣良.重组毕赤酵母表达期菌体浓度的软测量模型[J].食品与生物技术学报,2006,25(5):28-34. 被引量:5
  • 5WU Jian-feng,吴建锋,何小荣,陈丙珍.基于反馈神经网络的动态化工过程建模[J].计算机与应用化学,2001,18(2):105-110. 被引量:15
  • 6Bochereau L,Bourgine P,Bouyer F,et al.Using recurrent multiplayer neural networks for simulating batch reactors[J].IEEE International Joint Conference on Neural Networks,1991,2:1512-1517.
  • 7Barrera-Cortes J,Baruch I,Vazques-Cervantes V,et al.Neural model of Cry1A(c) protein produced from a B.t.feed batch fermentation[J].IEEE International Joint Conference on Neural Networks,2001,2:1302-1306.
  • 8朱海燕,朱晓莲,黄頔.基于动态BP神经网络的预测方法及其应用[J].计算机与信息技术,2007(Z1):3-6. 被引量:20
  • 9刘永霞,冯仲科,杜鹏志.Elman动态递归神经网络在树木生长预测中的应用[J].北京林业大学学报,2007,29(6):99-103. 被引量:16
  • 10Kim S S.Time-delay recurrent neural network for temporal correlations and prediction[J].Neurocomputing,1998,20(1/2/3):253-263.

二级参考文献37

共引文献76

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部