期刊文献+

基于Harris与Sift算法的图像匹配方法 被引量:40

An Images Matching Method Base on Harris and Sift Algorithm
在线阅读 下载PDF
导出
摘要 采用Harris角点检测算法进行图像特征检测,采用Sift算法中的特征描述方法进行图像特征描述,之后将图像特征点划分为多对多匹配对,根据特征描述值的支持强度不同建立精确的一对一匹配关系.该算法有效地避免了图像特征分布均匀时的Sift匹配效率较低的问题. Using Harris corner detection algorithm for image feature detection,adopting Sift algorithm for image feature description,the method divided the image feature points into many-to-many matching pairs,and established one-to-one matching according to the different sustaining intension of the feature description.The method effectively avoids the problem of low matching efficiency with Sift algorithm on the condition that the image feature is uniformly distributed.
出处 《测试技术学报》 2009年第3期271-274,共4页 Journal of Test and Measurement Technology
关键词 HARRIS角点检测 SIFT算法 特征描述 harris corner detection sift algorithm feature description
  • 相关文献

参考文献12

  • 1王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 2Lowe D.Distinctive image features from scale-invariant key points[J].International Journal on Computer Vision,2004,60(2):91-110.
  • 3Brown M Z,Burschka D.Advances in computational stereo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(8):993-1008.
  • 4Shapiro L G,Stockman G C.Computer Vision[M].Addison Wesley/Pearson,2005.
  • 5Chris Harris,Mike Stephens.A Combined Corner and Edge Detector[C].Manchester:Proceedings of the 4th Alvey Vision Conference,1988:147-151.
  • 6Moravec H P.Towards automatic visual obstacle avoidance[A].In:Proceedings of International Joint Conference on Artificial Intelligence[C],Cambridge,MA,USA,1977:584-590.
  • 7Lowe D G.Object recognition from local scale-invariant features[J].International Conference on Computer Vision,1999:1150-1157.
  • 8Mikolajczyk K,Schmid C.Scale & Affine invariant interest point detectors[J].International Journal of Computer Vision,2004,60(1):63-86.
  • 9Ke Y,Sukthankar R.PCA-SIFT:A more distinctive representation for local image descriptors[J].Computer Vision and Pattern Recognition,2004,6(2):506-513.
  • 10张羽,朱丹,王玉良.一种改进的快速SIFT特征匹配算法[J].微计算机信息,2008,24(33):220-222. 被引量:17

二级参考文献24

  • 1王敬东,徐亦斌,沈春林.一种新的任意角度旋转的景象匹配方法[J].南京航空航天大学学报,2005,37(1):6-10. 被引量:14
  • 2孙坚伟,王汝笠.改进的MOPs图像匹配算法[J].科学技术与工程,2006,6(21):3439-3441. 被引量:4
  • 3David G Lowe. Distinctive Image Features from Scale - Invariant Interest Points.International Journal of Computer Vision, 2004, 60 (2), 91-110.
  • 4Michael Grabner, Helmut Grabner, and Horst Bischof. Fast approximated SIFT. Asian Conference on Computer Vision,Hyderabad ,India, 2006, 918-927.
  • 5Paul Viola , Michael Jones. Rapid object detection using a boosted cascade of simple features. Computer Vision and Pattern Recognition.2001, Volume Ⅰ, 511 ┝518.
  • 6Fatih Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. Computer Vision and Pattern Recognition,2005, Volume 1,829-836.
  • 7Martin A.Fishchler, Robert C.Bolles. Random Sample Consensus: a paradigm for model fitting with application to image analysis and automated cartography.Communication Association Machine, 1981,24(6), 381-395
  • 8宰小涛,赵宇明.基于SIFT特征描述子的立体匹配算法[J].微计算机信息,2007(24):285-287. 被引量:25
  • 9THEVENAZ P,UNSER M.Optimization of mutual information for multiresolution image regisration[J].IEEE Transactions on Image Processing,2000,9 (12):2083-2099.
  • 10XIA Ming-hui,LIU Be -de.Image registration by "SuperCurves"[J].IEEE Transactions on Image Processing,2004,13 (5):720-732.

共引文献73

同被引文献324

引证文献40

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部