期刊文献+

GaAs-Based Metamorphic Long-Wavelength InAs Quantum Dots Grown by Molecular Beam Epitaxy 被引量:2

GaAs-Based Metamorphic Long-Wavelength InAs Quantum Dots Grown by Molecular Beam Epitaxy
在线阅读 下载PDF
导出
摘要 A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 μm at room temperature, and the density of the QDs is in the range of 4× 10^9-8 ×10^9cm^-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoeleetronic and quantum functional devices. A bilayer stacked InAs/GaAs quantum dot structure grown by molecular beam epitaxy on an In0.05Ga0.95As metamorphic buffer is investigated. By introducing a InGaAs:Sb cover layer on the upper InAs quantum dots (QDs) layers, the emission wavelength of the QDs is extended successfully to 1.533 μm at room temperature, and the density of the QDs is in the range of 4× 10^9-8 ×10^9cm^-2. Strong photoluminescence (PL) intensity with a full width at half maximum of 28.6meV of the PL spectrum shows good optical quality of the bilayer QDs. The growth of bilayer QDs on metamorphic buffers offers a useful way to extend the wavelengths of GaAs-based materials for potential applications in optoeleetronic and quantum functional devices.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第6期262-265,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 60625405 and 10734060, and the National Basic Research Program of China under Grant No 2006CB921504.
  • 相关文献

参考文献15

  • 1Huffaker D L, Park G, Zou Z and Shchekin O B 1998 Appl. Phys. Lett. 73 2564
  • 2Shernyakov Yu M, Bedarev D A, Kondrat'eva E Y, Kop'ev P Set al 1999 Electron. Lett. 35 898
  • 3Wu D H, Wang H L, Wu B P, Ni H Q et al 2008 Electron. Lett. 44 474
  • 4Tangring I, Ni H Q, Wu B P, Wu D H et al 2007 Appl. Phys. Lett. 91 221101
  • 5Da Silva M J, Quivy A A, Martini S and Lamas T E et al 2003 Appl. Phys. Lett. 82 2646
  • 6Kettler T, Karachinsky L Y, Ledentsov N N and Shchukin V A et al 2006 Appl. Phys. Lett. 89 041113
  • 7Li L H, Rossetti M, Fiore A and Patriarche G 2006 Electron. Lett. 42 638
  • 8Kidd P, Dunstan D J, Colson H G, Lourenco M A et al 1996 J. Cryst. Growth 169 649
  • 9Wu B P, Wu D H, Ni H Q, Huang S Set al 2007 Chin. Phys. Lett. 24 3543
  • 10Harmand J C, Li L H, Patriarche G and Travers L 2004 Appl. Phys. Lett. 84 3981

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部