期刊文献+

基于一种改进遗传模拟退火算法的TSP求解 被引量:26

Traveling Salesman Problem Solving Based on an Improved Genetic Simulated Annealing Algorithm
在线阅读 下载PDF
导出
摘要 快速收敛于全局最优解是遗传算法的一个研究重点。在对遗传算法和模拟退火算法研究的基础上,分析了两种算法各自的优缺点,对已有的遗传模拟退火算法进行了改进。结合遗传算法和模拟退火算法的优点,给出了一种并行的多层搜索结构,提高了算法的效率;同时,在此基础上,提出一种种群早熟评价指标。最后,将此改进算法应用到旅行商问题中,并分别对10个城市和30个城市的旅行商问题进行了仿真,用于验证算法的可行性和快速性。仿真结果表明。改进的遗传模拟退火算法能够较快的收敛于全局最优解。 Rapid convergence in the global optimal solution is a focus of genetic algorithm. Based on the study of genetic algorithm and simulated annealing algorithm, the paper analyses the major merits and shortcomings of the two algorithms, and gives an improved genetic simulated annealing algorithm, which combines the major merits of the two algorithms. Especially, it gives a parallel searching structure of multi layers, and gives a new criterion for judging the premature convergence in this improved algorithm. At last, the algorithm is applied in the traveling salesman problem ( TSP), and it is simulated with both of 10 - city TSP and 30 - city TSP to prove the algorithm' s feasibility and efficiency. The results of the simulation indicate that the improved algorithm has a rapid convergence in the global optimal solution.
作者 乔彦平 张骏
出处 《计算机仿真》 CSCD 北大核心 2009年第5期205-208,共4页 Computer Simulation
关键词 遗传算法 模拟退火算法 旅行商问题 过早收敛 Genetic algorithm Simulated annealing algorithm Traveling salesman problem (TSP) Premature convergence
  • 相关文献

参考文献6

二级参考文献74

  • 1陈晓方,桂卫华,吴敏,王雅琳.一种基于混沌迁移的伪并行遗传算法及其应用[J].控制理论与应用,2004,21(6):997-1002. 被引量:7
  • 2Ruo-Chen Liu,Li-Cheng Jiao,Hai-Feng Du.Clonal Strategy Algorithm Based on the Immune Memory[J].Journal of Computer Science & Technology,2005,20(5):728-734. 被引量:7
  • 3Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].San Francisco:Freeman W H,1979.
  • 4Lawer E,Lenstra J,Ronnooy K A,et al.The Traveling Salesman Problem[M].New York:Wiley-International Publication,1985.
  • 5Hopfield J J,Tank D W.Neural Computation of Decision in Optimization Problem[J].Biol Cybern,1985,52(1):141-152.
  • 6Wilson V,Pawlay G S.On the Stability of the TSP Problem Algorithm of Hopfield and Tank[J].Biol Cybern,1988,58(1):63-70.
  • 7Xu X,Tsai W T.Effective Neural Algorithms for the Traveling Salesman Problem[J].Neural Network,1991,4(1):193-205.
  • 8Wang S,Tsai C M.Hopfield Nets with Time-varying Energy Function for Solving the Traveling Salesman Problem[A].Int J Conf on Neural Networks[C].Seattle,Washington,1991:807-812.
  • 9Aiyer S V B,Niranjan M,Fallside F.A Theoretical Investigation into the Performance of the Hopfield Model[J].IEEE Trans on Neural Networks,1990,1(2):204-215.
  • 10Ackley D H,Hinton G E,Sejnowski T J.A Learning Algorithm for Boltzmann Machines[J].Cognitive Science,1985,9(1):147-169.

共引文献195

同被引文献214

引证文献26

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部