期刊文献+

一种基于属性加权的代价敏感支持向量机算法

Cost-sensitive support vector machine based on weighted attribute
在线阅读 下载PDF
导出
摘要 针对实际中存在的各类别样本错分造成不同危害程度的分类问题,提出了一种基于属性加权的代价敏感支持向量机分类算法,即在计算各个样本特征属性对分类的重要度之后,对相应的属性进行重要度加权,所得的数据用于训练和测试代价敏感支持向量机。数值实验的结果表明,该方法提高了误分代价高的类别的分类精度,同时属性重要度的引入提高了分类器的整体分类性能。该方法对错分代价不对称的数据分类问题具有重要的现实意义。 In practice it was existed different wrong-classified-cost matter in classified problem. This paper proposed a costsensitive SVM approach based on weighted attribute, which firstly calculated the weightiness of feature attributes corresponded to the classification attribute, then calculated the corresponding weightiness of attribute for all samples, finally the samples were used for cost-sensitive SVM training and testing. The experimental results showed that the approach can improve the classification precision of the cost-sensitive samples, and the use of feature attribute increased the integer classified capability of the classifier. The approach has important realistic significance of unbalanced wrong-classification cost in classified problems.
出处 《电子技术应用》 北大核心 2009年第6期125-127,共3页 Application of Electronic Technique
关键词 属性加权 支持向量机 代价敏感支持向量机 weighted attribute support vector machine cost-sensitive support vector machine
  • 相关文献

参考文献5

二级参考文献34

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2赵晖,荣莉莉.支持向量机组合分类及其在文本分类中的应用[J].小型微型计算机系统,2005,26(10):1816-1820. 被引量:7
  • 3张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 4[1]Vapnik V. The nature of statistical learning theory[M]. New York : Springer-Verlag, 1995.
  • 5[2]Joachims T. Text categorization with support vector machines[R]. Technical Report, LS Ⅷ Number 23, University of Dortmund, German, 1997.
  • 6[3]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C],Puerto Rico, 1997: 130~136.
  • 7[4]Schmidt M. Identifying speaker with support vector networks[A]. In: Interface'96 Proceedings [C], Sydney, Australia,1996.
  • 8[5]Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002,26 (3): 293 ~ 296.
  • 9[6]Chew Hong-Gunn, Crisp D J, Bogner R E et al. Target detection in radar imagery using support vector machines with training size biasing [A]. In: Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision[C], Singapore, 2000.
  • 10[7]Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing[A]. In:Proceedings of 26th IEEE ICASSP(International Conference on Acoustics, Speech, and Signal Processing) 2001[C], Salt Lake City, UT,USA, 2001: 1269~1272.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部