期刊文献+

一种新的模糊自适应模拟退火遗传算法 被引量:30

New fuzzy adaptive simulated annealing genetic algorithm
原文传递
导出
摘要 针对遗传算法收敛速度慢、容易"早熟"等缺点,结合模糊推理、模拟退火算法和自适应机制,提出一种改进的遗传算法——模糊自适应模拟退火遗传算法(FASAGA),并分析了该算法的性能和特点.实验研究表明,该算法比标准的遗传算法(SGA)具有更快的收敛速度和寻优效果. Due to shortcomings of genetic algorithm that its convergence speed is slow and it is often premature convergence, an improved genetic algorithm, fuzzy adaptive simulated annealing genetic algorithm (FASAGA), is presented by integrating fuzzy inference, simulated annealing algorithm and adaptive mechanism. Then the performance and the characteristic of this method are analyzed. Simulation results illustrate that FASAGA has better convergence speed and optimal results than standard genetic algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2009年第6期843-848,853,共7页 Control and Decision
基金 国家科技支撑计划项目(2007BAF13B03) 浙江省自然科学基金项目(Y1080776)
关键词 遗传算法 模糊控制 模拟退火 自适应 Genetic algorithm Fuzzy control Simulated annealing Adaptive
  • 相关文献

参考文献13

  • 1Srinivas M. Adaptive probabilities of crossover and mutation in genetic algorithms [J].IEEE Trans on Systems, Man and Cybernetics, 1994, 4(24): 656-667.
  • 2Gao Feng, Shen Y, Li L. electric actuators for plate genetic algorithms with Optimal design of piezo- vibroacoustic control using immune diversity [ J ]. SmartMaterials and Structures Aug 2000 IOP: 485-491
  • 3杨旭东,张彤,张家余.遗传算法应用于系统在线辨识研究[J].哈尔滨工业大学学报,2000,32(1):102-104. 被引量:11
  • 4Jun, J H, Lee D W, Sim K B. Realization of cooperative and swarm behavior in distributed autonomous robotic systems using artificial immune system[C]. Proc of IEEE SMC'99. Tokyo, 1999, 4:614-619.
  • 5戚志东,朱新坚,朱伟兴.基于模糊规则优化的改进模糊遗传算法[J].计算机工程与应用,2003,39(27):18-20. 被引量:3
  • 6Herrera F, Lozano M, Verdegay J L. Fuzzy connectives based crossover operators to model genetic algorithms population diversity[J]. Fuzzy Sets and Systems, 1997, 92(1): 21-30.
  • 7Yougsu Yun, Mitsuo Gen. Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics[J]. Fuzzy Optimization and Decision Making, 2003, 2(2): 161-175.
  • 8Grefenstette J J. Incorporating problem specific knowledge into genetic algorithm [ C ]. Genetic Algorithm and Simulated Annealing. Pitman, 1987: 42- 60.
  • 9Orvosh D, Davis L. Using a genetic algorithm to optimize problem with feasibility eonstraints[C]. Proc of 1st IEEE Conf on Evolutionary Computation. Orlando, 1994: 548-553.
  • 10谢经明,徐小凤,陈冰,陈幼平,艾武.基于模拟退火遗传算法的电动汽车网络优化调度[J].中国机械工程,2007,18(14):1697-1700. 被引量:7

二级参考文献22

  • 1张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:97
  • 2恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 3黄炯,邬永革,李军,王执铨.基于遗传算法的系统在线辨识[J].信息与控制,1996,25(3):171-176. 被引量:13
  • 4方崇智 萧德云.过程辨识[M].北京:清华大学出版社,1994..
  • 5丁承民,张传生,刘辉.遗传算法纵横谈[J].信息与控制,1997,26(1):40-47. 被引量:92
  • 6Li T H,Lucasius C B,Kateman G.Optimization of calibration data with the dynamic genetic algorithm[J].Analytica Chimica Acta, 1992;268: 123-134.
  • 7errera F,Lozano M,lozano Met al.Tracking fuzzy genetic algorithms[C]. In:G Winter,J Periax,M Galan eds.Genetic Algorithms in Engineering and Computer Science.
  • 8H Y XU,Vukovich G.Fuzzy evolutionary algorithms and automatic robot trajectory generation[C].In:Prec of The First IEEE Conference on Evolutonary computation, Orlando, 1994:595-600.
  • 9Scrinvas M,Patnik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J].IEEE Trans SMC, 1994;24(4):656.
  • 10方崇智,过程辨识,1998年

共引文献19

同被引文献356

引证文献30

二级引证文献651

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部