期刊文献+

基于灰度特征聚类的图像自动分割方法 被引量:2

Intensity clustering based image segmentation
原文传递
导出
摘要 脉冲耦合神经网络是一种新型神经网络,该网络无需训练,根据脉冲耦合神经网络相邻神经元同步点火特性,提出了一种基于灰度特征聚类的脉冲耦合神经网络图像分割方法,利用脉冲耦合神经网络点火捕获特性,实现了对特征的自组织聚类,克服了以往基于统计方法对于相邻灰度影响的考虑,弥补了空间不连贯灰度区域分割成离散块的缺点.针对目前对网络参数的选取还主要停留在人工调整和确定阶段,对参数的选取进行了分析,并对迭代终止条件进行了研究.通过实验,证明分析结果是有效的. Pulse coupled neural network (PCNN) is a novel architecture neural network. This neural network is based on the mammalian vision and simulates the way that the brain process visual impressions. It works without training, which means that the PCNN itself knows nothing about the features in the images. A novel image segment method is presented based on intensity clustering using PCNN, utilizing its synchronization fire characteristic to carry out the self-organization clustering. The method presented performs well in segmentation experiments; its most useful characteristic is that it can segment discontinuity area as a whole piece. Aiming at good performance, the criteria of choosing parameters are analyzed. It has been proved that the criteria is useful.
作者 惠飞 黄士坦
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2009年第3期405-408,共4页 Engineering Journal of Wuhan University
基金 航天科技集团核心计划项目(编号:417010202)
关键词 脉冲耦合 神经网络 灰度聚类 图像分割 pulse coupled neural network intensity cluster image segmentation
  • 相关文献

参考文献12

  • 1周新建,涂宏斌.基于改进的K-means聚类图像分割算法[J].无损检测,2007,29(5):258-261. 被引量:4
  • 2Pal N R, Pal S K. Review on image segmentation[J]. Pattern Recognition, 1993,26 (9) : 1277-1294.
  • 3Haralick R M, Shapiro L G. Image segmentation techniques survey[J]. Coput. Vision, Graphics, Image Processing, 1985,29 : 100-132.
  • 4Alan Wee-Chung Liew, Hong Yan, N F Law. Image segmentation based on adaptive cluster prototype estimation[J]. IEEE Transactions on Fuzzy Systems, 2005,13(4):444-453.
  • 5Reinhard Eckhorn, Alexander Gail, Andreas Bruns, et al. Neural mechanisms of visual associative processing [J].Acta Neurobiol Exp, 2004,64 : 239-252.
  • 6Johnson J L, Padgett M L. PCNN models and applications[J].IEEE Transactions on Neural Networks, 1999,10(3) : 480-498.
  • 7Horowitz S L, Pavlidis T. Picture segmentation by a directed split-and-merge procedure [C]//Proc. 2nd Int. Joint Conf. Pattern Recognition. New York: Springer, 1977.
  • 8顾晓东,张立明,余道衡.一定条件下PCNN动态行为的分析[J].计算机工程与应用,2004,40(19):6-8. 被引量:6
  • 9Johnson J L, Ritter D. Observation of periodic waves in a pulse coupled neural network[J]. Opt Lett, 1993, 2(3) :293-307.
  • 10马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:146

二级参考文献23

  • 1郭欣,赵淑清.概率模型下的K-means算法在SAR图像分类中的应用[J].遥感技术与应用,2005,20(2):295-298. 被引量:8
  • 2KUNTIMAD G, RANGANATH H S. Perfect Image Segmentation Using Pulse Coupled Neural Networks [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 591-598.
  • 3JOHNSON J L, PADGETT M L. PCNN Models and application[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 480-498.
  • 4R Eckhorn,H J Reitboeck,M Arndt et al.Feature linking via synchronization among distributed assemblies:Simulation of results from cat cortex[J].Neural Computation,1990;2(3):293~307
  • 5J L John,D Ritter.Observation of periodic waves in a pulse-coupled neural network[J].Opt Lett,1993;18(15):1253~1255
  • 6J L Johnson,M L Padgett.PCNN models and applications[J].IEEE Trans on Neural Networks,1999;10(3):480~498
  • 7G Kuntimad,H S Ranganath.Perfect image segmentation using pulse coupled neural networks[J].IEEE Trans on Neural Networks,1999;10(3):591~598
  • 8H S Ranganath,G Kuntimad.Object detection using pulse coupled neural networks[J].IEEE Trans on Neural Networks,1999;10(3):615~620
  • 9H J Caufield,J M Kinser.Finding shortest path in the shortest time using PCNN's[J]IEEE Trans on Neural Networks,1999;10(3):604~606
  • 10Cohen F S,Fan Zhigang,Attali S.Automated inspection of textile fabrics using texture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):803-808.

共引文献151

同被引文献23

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部