期刊文献+

多注双间隙耦合腔电子电导计算与模拟 被引量:3

Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity
在线阅读 下载PDF
导出
摘要 该文基于空间电荷波理论模型,推导出多注双间隙耦合腔电子电导的单模理论和多模理论计算公式。比较结果显示对于双间隙耦合腔,单模理论计算结果足够准确。由粒子模拟结果与计算结果的一致证明了计算结果的正确性。最后使用粒子模拟研究了电压调制系数和聚焦磁场对电子电导的影响。结果显示当电压调制系数小于0.1并且聚焦磁场大于1.5倍布里渊磁场时,小信号理论计算的电子电导是准确的。 Based on the single-mode and multi-mode space charge wave theory, the analytical expressions for the electronic conductance in a double gap coupling MBK cavity are derived. The analytical theories show that the single-mode theory is sufficiently accurate for common coupling double gap cavity. In addition, the results of analytical theory are shown to agree well with particle-in-cell simulations. Moreover the effects of the modulation coefficient and axial magnetic field on the electronic conductance are researched by PIC simulation. The results show that the electronic conductance calculated by small signal theory is accurate when the modulation coefficient is less than 0.1 and the magnetic field exceeds 1.5 times of the Brillouin field.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第5期1214-1217,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60701011)资助课题
关键词 多注速调管 双间隙耦合腔 电子电导 Multi-beam klystron Double gap coupling cavity Electronic conductance
  • 相关文献

参考文献12

  • 1Vlasov D. Calculation of the conductance introduced by an electron beam into a resonator. Radiotekhnika i Electronika (USSR), 1963, 8(5): 878-880.
  • 2Branch C M. Electron beam coupling in interaction gaps of cylindrical symmetry. IEEE Trans. on Electron Devices, 1961, ED-8(5): 193-207.
  • 3Wilsen C B, Yue Y L, and Antonsen Jr T M, et al.. A simulation study of beam loading on a cavity. IEEE Trans. on Plasma Sci, 2002, 30(3): 1160-1168.
  • 4Craig E J. The beam-loading admittance of gridless klystron gaps. IEEE Trans. on Electron Devices, 1967, ED-14(5): 273-278.
  • 5Kowalczyk R, Yue Y L, and Antonsen Jr T M , et al.. AC space charge effects on beam loading of a cavity. IEEE Trans. on Electron Devices, 2005, 52(9): 2087-2095.
  • 6Kowalczyk R, Yue Y L, and Gilgenbach R M. Effects of a finite axial magnetic field on the beam loading of a cavity.IEEE Trans. on Electron Devices, 2004, 51(9): 1522-1527.
  • 7Lien E and Robinson D. Study and investigation leading to the design of broadband high--power klystron amplifiers, Technical Report for United States And Electronics Command, March. 1967, No. ECOM--02157--1, 1967.
  • 8林福民,丁耀根.速调管耦合双间隙腔输出回路的绝对稳定性判据[J].真空电子技术,2004,17(2):10-12. 被引量:8
  • 9Wang Yong, Ding Y G, and Liu P K, et al.. Development of an S-band klystron with bandwidth of more than 11%. IEEE Trans. on Plasma Sci., 2006, 34(3): 572-575.
  • 10Nguyen K T, Pershing D E, Abe D K, and Levush B L. Bandwidth extension of an S-band, fundamental-mode eight-beam klystron. IEEE Trans. on Plasma Sci., 2006, 34(3): 576-583

二级参考文献7

共引文献7

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部