期刊文献+

On Representation Theorem of G-Expectations and Paths of G-Brownian Motion 被引量:19

On Representation Theorem of G-Expectations and Paths of G-Brownian Motion
原文传递
导出
摘要 We give a very simple and elementary proof of the existence of a weakly compact family of probability measures {Pθ : θ∈θ} representing an important sublinear expectation- G-expectation E[·]. We also give a concrete approximation of a bounded continuous function X(ω) by an increasing sequence of cylinder functions Lip(Ω) in order to prove that Cb(Ω) belongs to the completion of Lip(Ω) under the natural norm E[|·|]. We give a very simple and elementary proof of the existence of a weakly compact family of probability measures {Pθ : θ∈θ} representing an important sublinear expectation- G-expectation E[·]. We also give a concrete approximation of a bounded continuous function X(ω) by an increasing sequence of cylinder functions Lip(Ω) in order to prove that Cb(Ω) belongs to the completion of Lip(Ω) under the natural norm E[|·|].
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第3期539-546,共8页 应用数学学报(英文版)
基金 support from The National Basic Research Program of China(973 Program)grant No.2007CB814900(Financial Risk)
关键词 Probability and distribution uncertainty G-normal distribution G-Brownian motion continuous paths Probability and distribution uncertainty G-normal distribution G-Brownian motion continuous paths
  • 相关文献

参考文献1

二级参考文献44

  • 1Allais, M., La psychologie de l'home rationnel devant le risque: critique des postulats et axiomes de l'cole Amricaine, Econometrica, 21:4(1953), 503-546. Translated and reprinted in Allais and Hagen,1979.
  • 2Artzner, P., Delbaen, F., Eber, J. M. & Heath, D., Coherent measures of risk, Math. Finance, 9(1999),203-228.
  • 3Barrieu, P. & El Karoui, N., Optimal derivatives design under dynamic risk measures, Contemp. Math.,Amer. Math. Soc., 315(2004), 13-25.
  • 4Bensoussan, A., Stochastic Control by Functional Analysis Methods, North-Holland, 1982.
  • 5Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectations, Electron. Comm. Probab, 5(2000), 26.
  • 6Chen, Z., A property of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I Math., 326:4(1998), 483-488.
  • 7Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica,70:4(2002), 1403-1443.
  • 8Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration-consistent nonlinear expectations and related g-expectations, Probab. Theory Relat. Fields, 123(2002), 1-27.
  • 9Crandall, M. G., Ishii, H. & Lions, P. L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (NS), 27(1992), 1-67.
  • 10Chen, Z. & Peng, S., A Nonlinear Doob-Meyer type decomposition and its application, SUT Journal of Mathematics (Japan), 34:2(1998), 197-208.

共引文献30

同被引文献43

引证文献19

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部